

JEE (MAIN)-2025 (Online)

Chemistry Memory Based Answer & Solutions

MORNING SHIFT

DATE: 22-01-2025

Disclaimer

The questions and solutions provided for JEE Main 2025 Session-1 are based on students' memory. While every effort has been made to ensure accuracy, there may be discrepancies or variations from the actual exam. These materials are intended for reference and educational purposes only. They do not represent the official question paper or solutions provided by the exam conducting authority.

We recommend cross-verifying with official sources and using this content as a supplementary resource for your preparation.

Offline Corporate Address: "SANKALP" CP-6, Indra Vihar Kota (Rajasthan), India 324005

🌺 Online Corporate Address : One Biz Square, A-12 (a), Road No. 1, Indraprastha Industrial Area, Kota - 324005 (Raj.)

MEMORY BASED QUESTIONS JEE-MAIN EXAMINATION - JANUARY, 2025

(Held On Wednesday 22nd January, 2025) TIME

TIME: 9:00 AM to 12:00 PM

CHEMISTRY

SECTION-A

- 1. Correct decreasing order of electronegativity.
 - (1) F > C1 > I > Br
- (2) C1 > F > Br > I
- (3) F > Cl > Br > I
- (4) Br > F > I > C1

- Ans. (3)
- **Sol.** $F \rightarrow 4.0$

 $Cl \rightarrow 3.0$

 $Br \rightarrow 2.8$

 $I \rightarrow 2.5$

"EN order: F > Cl > Br > I"

- 2. Compare boiling point of given dilute solutions
 - (I) 10⁻⁴ M NaCl
- $(II) 10^{-3} M NaCl$
- $(III) 10^{-2} M NaCl$
- (IV) 10⁻⁴ M urea
- (1) I > II > III > IV
- (2) III > II > IV
- (3) II > I > III > IV
- (4) III > I > II > IV

- Ans. (2)
- **Sol.** $\Delta T_b = i \times m \times k_b$

 $\Delta T_b \propto i \times m$

For NaCl

i = 2

urea = i = 1

- (I) $\Delta T_b(NaCl) = 10^{-4} \times 2$
- (II) ΔT_b (NaCl) = $10^{-3} \times 2$
- (III) ΔT_b (NaCl) = $10^{-2} \times 2$
- (IV) ΔT_b (urea) = 10^{-4}

Order of $\Delta T_b = [III > II > I > IV]$

- 3. The Lassiagne's extract is boiled with dil. HNO₃ before testing for halogens because.
 - (1) AgCN is soluble in HNO₃
 - (2) Silver halides are soluble in HNO₃
 - (3) Ag₂S is soluble in HNO₃
 - (4) Na₂S and NaCN are decomposed by HNO₃
- Ans. (4)
- Sol. $NaCN + HNO_3 \longrightarrow NaNO_3 + HCN \uparrow (g)$

 $Na_2S + HNO_3 \longrightarrow NaNO_3 + H_2S \uparrow (g)$

After removal of NaCN and Na₂S, AgNO₃ is added for the detection of halide in sodium extract.

TEST PAPER WITH SOLUTION

- **4.** For [Ni(Cl)₄]⁻² and [Ni(CO)₄] what is the charge on metal and shape of complex respectively
 - (1) Ni (II) Square planar, Ni (0) Tetrahedral
 - (2) Ni (II) Tetrahedral, Ni (0) Square planar
 - (3) Ni (II) Tetrahedral, Ni (0) Tetrahedral
 - (4) Ni (0) Tetrahedral Ni (II) Square planar
- Ans. (3)
- **Sol.** $[Ni(C1)_4]^{2-}$

 $Ni^{+2}: [Ar]3d^8$

 $Cl \rightarrow WFL$

Tetrahedral (sp³)

 $[Ni(CO)_4]$

 $Ni^0 : [Ar]4S^2 3d^8$

 $CO \rightarrow SFL$

After rearrangement

Ni : [Ar] 3d¹⁰

sp³ (Tetrahedral).

- 5. Which of the following given complex has crystal field splitting energy $(\Delta_0) = 0$
 - (1) $[Fe(en)_3]Br_2$
 - (2) $[Fe(NH_3)_6]Br_2$
 - (3) $K_4[Fe(CN)_6]$
 - (4) K₃[Fe(SCN)₆]

Ans. (4)

Sol. $K_3[Fe(SCN)_6]$

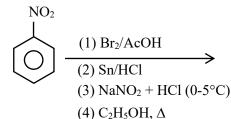
 $Fe^{+3}:3d^5$

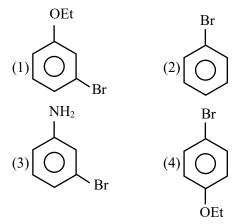
1 1 eg

 $111t_{2g}$

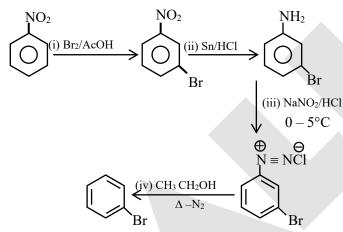
$$\Delta_0 = 3 \times (-0.4\Delta_0) + 2 \times (+0.6 \Delta_0)$$

= 0


- **6.** Which of following is vitamin
 - (1) Aspartic Acid
 - (2) Ascorbic Acid
 - (3) Saccharic Acid
 - (4) Gluconic Acid


Ans. (2)

Sol. Vitamin C is Ascorbic acid



7. The final product of following reaction sequence is

Ans. (2) Sol.

- $CO_2(g)$ at 0.5 atm is allowed to react with excess 8. of C(s). Equilibrium pressure is 0.8 atm. Calculate $K_P \text{ of } CO_2(g) + C(s) \rightleftharpoons 2CO(g).$
 - (1) 1.8 atm
- (2) 0.8 atm
- (3) 1.5 atm
- (4) 0.5 atm

Ans. (1)

Sol.
$$CO_2 + (Cs) \Longrightarrow 2CO(g)$$

 $t = 0 \quad 0.5$

t = t 0.5 - x 2x
equilibrium pressure = 0.8
=
$$0.5 - x + 2x = 0.8$$

= $0.5 + x = 0.8$
 $x = 0.3$

$$K_P = \frac{(P_{CO})^2}{P_{Co_2}} = \frac{(2 \times 0.3)^2}{(0.5 - 0.3)} = \frac{(2 \times 0.3)^2}{0.2}$$

- 2 amp. Current is passed for 30 minutes through molten AlCl₃. Mass of Al deposited (Al = 27)
 - (1) 0.335

 $K_P = 1.8$ atm

- (2) 0.273
- (3) 0.421
- (4) 0.520

Ans. (1)

Sol.
$$w = \frac{Eit}{96500}$$
$$w = \frac{27 \times 2 \times 30 \times 60}{3 \times 96500}$$
$$w = 0.335$$

10. The IUPAC name of following compound is:

$$\begin{array}{c|c} CH_3-CH-CH_2-CH_2-CH-CH_3\\ \hline\\ COOH \end{array}$$

- (1) Hexane-2, 4-dicarboxylic acid
- (2) 2,5-dimethyl pentanedioic acid
- (3) 2,5-dimethyl hexanedioic acid
- (4) 2,5-dicarboxyhexane

Ans. (3)

- 2,5-dimethyl hexanedioic acid
- For Ist order isomerisation reaction $A \rightarrow B$ incorrect 11. statement is:
 - (1) Rate constant increase with temperature
 - (2) Rate constant is independent of temperature
 - (3) After 3 half lives of reaction 1/8th of the initial amount of reactant is left
 - (4) Half life $t_{1/2} = \frac{\ell n2}{k}$ where $k \to \text{rate constant}$

Ans. (2)

Sol. Rate constant is dependent of temperature.

$$k = A e^{-Ea/RT}$$

- 12. Which of the following incorrect order of electronegativity.
 - (1) Mg < Be < B < N
- (2) Al < Si < C < N
- (3) S < Cl < O < F (4) Al < Mg < B < N

Ans. (4)

Sol. Mg \rightarrow 1.2

 $Be \rightarrow 1.5$

 $Al \rightarrow 1.5$

 $B \rightarrow 2.0$

 $N \rightarrow 3.0$

 $O \rightarrow 3.5$

 $F \rightarrow 4.0$

 $Si \rightarrow 1.8$

 $C \rightarrow 2.5$

 $S \rightarrow 2.5$

 $Cl \rightarrow 3.0$

13. To form $H_2S_2O_8$ by the electrolysis can be done in

- (1) Conc. H₂SO₄
- (2) dil. H₂SO₄
- (3) Acidified sodium sulphate
- (4) Dil sodium sulphate

Ans. (1)

Sol. Peroxydisulfuric acid (H₂S₂O₈) can be prepared by electrolytic oxidation of con. H₂SO₄.

14. Which of the following is/are incorrect –

- (a) Cis but-2-ene is more polar than trans-but-2-ene
- (b) Boiling point of cis isomer is greater than trans isomer (in general)
- (c) 2-Methylbut-2-ene shows geometrical isomerism
- (d) Propene shows geometrical isomerism
- (e) Stability of transbut-2-ene is greater than cisbut-2-ene

(2) c, d

(3) a, e

(4) a, b, c

Ans. (2)

Sol. Statement c and d are incorrect.

15. Correct order of Acidic strength is:

(ii)
$$O_2N - OH$$

(iv)
$$O_2N \longrightarrow OH$$

(1)
$$iv > ii > iii > i$$

(2)
$$i > iii > ii > iv$$

(3)
$$iv > iii > ii > i$$

(4)
$$i > iv > ii > iii$$

Ans. (1)

Sol. Correct order of Acidic strength is iv > ii > iii > I Nitro group increases acidic strength due to -M, -I

16. Statement-1 \rightarrow CH₃—O—CH₂—Cl will give S_N1 reaction.

 $\begin{array}{ll} \textbf{Statement-2} & \rightarrow & \text{Neopentyl chloride give } S_N 2 \\ \text{reaction with difficulty.} \end{array}$

- (1) Statement-1 is correct and statement-2 is correct
- (2) Statement-1 is correct and statement-2 is incorrect
- (3) Statement-1 is incorrect and statement-2 is correct
- (4) Statement-1 is incorrect and statement-2 is incorrect

Ans. (1)

Sol. $CH_3 - O - CH_2$ carbocation is stable so it give S_N1 .

is more sterically hindered, So S_N2 is difficult.

- 17. The ground state radius of Hydrogen atom is a₀. Calculate the radius of first excited state of He⁺?
 - $(1) a_0$

 $(2)2a_0$

 $(3) 3a_0$

 $(4) 4a_0$

Ans. (2)

Sol. First excited of He⁺

$$n = 2$$

$$r = a_0 \times \frac{n^2}{z}$$

$$r = a_0 \times \frac{(2)^2}{2}$$

$$r = a_0 \times 2$$

$$r = 2a_0$$

18. Major product of the reaction is

Ans. (A) Sol.

SECTION-B

Molecular weight of product A is:

Ans. (154)

Sol.

$$NO_{2} \longrightarrow NH_{2} \longrightarrow NCI$$

$$NaNO_{2}/HCI \longrightarrow NaNO_{2}/HCI \longrightarrow NaNO_{2}/HCI$$

$$CuCI/HCI \longrightarrow Sandmeyer reaction$$

$$CI \longrightarrow Na$$

$$Ether$$

$$fitting reaction$$

Molecular weight of $C_{12}H_{10}$ $12 \times 12 + 10 = 154$.

20. Number of species with liner shape is

$$NO_{2}^{+}$$
, NO_{2} , I_{3}^{-} , XeF_{2} , O_{3} , $BeCl_{2}$
 OF_{2} , N_{3} , SO_{2} , CO_{2}

Ans. (6)

Sol. $NO_2^+ \rightarrow Linear$

$$NO_2 \rightarrow Bent$$

 $I_3 \rightarrow Linear$

 $XeF_2 \rightarrow Linear$

 $O_3 \rightarrow Bent$

 $BeCl_2 \rightarrow Linear$

 $OF_2 \rightarrow Bent$

 $N_3^- \rightarrow Linear$

 $SO_2 \rightarrow Bent$

 $CO_2 \rightarrow Linear$

21. How many of the following have half-filled 4f-subshells among

Ans. (2)

Sol.
$$Gd^{+3}: 4f^{7}$$

$$Eu^{+2}: 4f^7$$

$$Eu^{+3}:4f^{6}$$

$$Tb^{+2}:4f^{9}$$

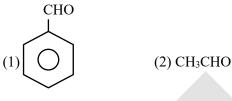
$$Sm^{+2}:4f^{6}$$

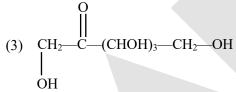
22. In carius method of estimation of halogen 180 mg of an organic compound gives 143.5 mg of AgCl. Find out the percentage of chlorine in the compound. (Mark your answer to nearest integer)

Ans. (20)

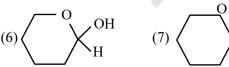
Sol. Organic compound \longrightarrow AgCl 180 mg 143.5 mg

mole of AgCl


$$= \frac{\text{mass}}{\text{molar mass}}$$
$$= \frac{143.5 \times 10^{-3}}{143.5} = 10^{-3} \text{ mole}$$


mole of $Cl = 10^{-3}$ mole

mass of Cl = $10^{-3} \times 35.5$


% of compound =
$$\frac{35.5 \times 10^{-3}}{180 \times 10^{-3}} \times 100$$

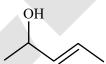
= $19.7 \approx 20\%$

23. How many of the following gives positive Fehling's solutions.

Ans. (4) **Sol.** (2), (3), (4) and (6)

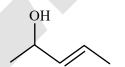
24. CO₂ gas is reacted with excess of Ca(OH)₂ & after the reaction remaining Ca(OH)₂ is completely reacted 0.1 M 40 ml HCl solution.
Given CO₂ consumed half of the given Ca(OH)₂
Vol. of CO₂ gas initially given at 273 K & 1 atm is x cm³. Value of x is

Ans. (45)


Sol. $Ca(OH)_2 + 2HCl \longrightarrow CaCl_2 + 2H_2O$ m mole of $Ca(OH)_2$ reacts with HCl $= \frac{40 \times 0.1}{2} = 2$

 \therefore m mole of CO₂ present initially = 2

Volume of CO_2 present initially at 273K and 1 atm = $2 \times 10^{-3} \times 22.4$


= 45

25. Calculate total number of stereoisomers in the given structure

Ans. (4)

Sol.

Total stereoisomers = 2^n = 2^2 =