PHYSICS

1. (c)

Using tangent law

 $\frac{\mu_0}{4\pi} \cdot \frac{2\pi nI}{r} = H \tan \theta$

 $nI \propto \tan \theta$

On increasing no. of turns, resistance and length increases so current decreases and *nI* remains same **2.** (c)

Intensity=energy/sec/area=power/area.

From a point source, energy spreads over the surface of a sphere of radiusr.

Intensity $=\frac{P}{A} = \frac{P}{4\pi r^2} \propto \frac{1}{r^2}$ But Intensity = (Amplitude)² \therefore (Amplitude)² $\propto \frac{1}{r^2}$ or Amplitude $\propto \frac{1}{r}$ At distance 2*r*, amplitude becomes *A*/2 **3.** (d)

Intensity of electromagnetic wave is $I = \frac{P_{av}}{4\pi \times r^2} = \frac{E_0^2}{2\mu_0 c}$

or
$$E_0 = \sqrt{\frac{\mu_0 c P_{av}}{2\pi r^2}}$$

$$= \sqrt{\frac{(4\pi \times 10^{-7}) \times (3 \times 10^8) \times 800}{2\pi \times (4)^2}}$$

$$= 54.77 \text{ Vm}^{-1}$$
4. (b)

$$\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma-1} \Rightarrow T_2 = 300 \left(\frac{27}{8}\right)^{\frac{5}{3}-1} = 300 \left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$= 300 \left\{ \left(\frac{27}{8}\right)^{1/3} \right\}^2 = 300 \left(\frac{3}{2}\right)^2 = 675K$$

$$\Rightarrow \Delta T = 675 - 300 = 375K$$
5. (b)

The average power consumed in an AC circuit is given by

$$P = \frac{V_0 I_0}{2} \cos \phi$$

Where ϕ is phase angle and V_0 and I_0 the peak value of voltage and current. Given, $V_0 = 200V$, $I_0 = 2A$, $\phi = \frac{\pi}{3}$.

$$P = \frac{200 \times 2}{2} \cos \frac{\pi}{3}$$

= $\frac{200 \times 2}{2} \times \frac{1}{2} = 100 \text{ W}$
6. (a)

Work done in moving a charge q into a uniform electric field E through a distance Y is work done= Force × distance

$$= (qE) \times r = qEY$$

JEE MAIN PRACTICE PAPER 2024-2025

$$\overline{A \cdot \overline{A}} = \overline{A} + \overline{\overline{A}} = \overline{A} + A = 1$$
$$A \cdot \overline{A} = 0$$
$$A + \overline{A} = 1$$
$$A + 1 = 1$$

8. (b)

$$Y = \frac{F}{A} \times \frac{L}{l}$$
 or $l = \frac{FL}{AY}$ or $l \propto 1/A$

9. (b)

Let 'a' be the retardation of boggy then distance covered by it be S. If u is the initial velocity of boggy after detaching from train (*i. e.* uniform speed of train)

$$v^{2} = u^{2} + 2as \Rightarrow 0 = u^{2} - 2as \Rightarrow s_{b} = \frac{u^{2}}{2a}$$

Time taken by boggy to stop
 $v = u + at \Rightarrow 0 = u - at \Rightarrow t = \frac{u}{a}$
In this time t distance travelled by train = $s_{t} = ut = \frac{u^{2}}{a}$
Hence ratio $\frac{s_{b}}{s_{1}} = \frac{1}{2}$

10. (c)

According to Bernoulli's Theorem; $p = \frac{1}{2}\rho v^2 = \text{constant}$. Near the ends, the velocity of liquid is higher so that pressure is lower as a result the liquid rises at the sides to compensate for this drop of pressure

$$ie, \rho g h = \frac{1}{2}\rho v^2 = \frac{1}{2}\rho r^2 \omega^2$$
Hence, $h = \frac{r^2 \omega^2}{2g} = \frac{r^2 (2\pi v)^2}{2g} = \frac{2\pi^2 r^2 v^2}{g}$

$$= \frac{2 \times \pi^2 \times (0.05)^2 \times 2^2}{9.8}$$

$$= 0.02 \text{ m} = 2 \text{ cm}$$
11. (b)
12. (a)
$$n=4 \xrightarrow[n=3]{n=2} n=2 \xrightarrow[n=3]{n=2} n=2$$

$$n=4 \xrightarrow[\text{First line of Balmer series}} n=4 \xrightarrow[\text{Balmer series}]{second line of Balmer series}$$

For hydrogen or hydrogen type atoms

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$$

In the transition from $ni \rightarrow nf$

$$\therefore \qquad \lambda \propto \frac{1}{Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)}$$

JEE MAIN PRACTICE PAPER 2024-2025

$$\therefore \qquad \frac{\lambda_2}{\lambda_1} = \frac{Z_1^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_1}{Z_2^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_2} \\ \lambda_2 = \frac{\lambda_1 Z_1^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_1}{Z_2^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)_2}$$

Substituting the values, we have

$$=\frac{(6561)(1)^2\left(\frac{1}{2^2}-\frac{1}{3^2}\right)}{(2)^2\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}=1215\,\text{\AA}$$

13. (b)

As $\lambda_{blue} < \lambda_{red}$ and width of diffraction bands is directly proportional to λ , therefore diffraction bands become narrower and crowded

14. (b)

15. (a)

Apparent weight (w_a) = Actual weight (w) - upthrust(F), where upthrust = weight of water displaced = $V p\omega$ g Now, $F_0 = V_0 \rho_0$ g and $F_{50} = V_{50} \rho_{50}$ g $\therefore \frac{F_{50}}{F_0} = \frac{V_{50} \rho_{50} \text{ g}}{V_0 \rho_0 \text{ g}} = \frac{1 + \gamma_m \times 50}{1 + \gamma_w \times 50}$ As $\gamma_m < \gamma_w$, therefore, $F_{50} < F_0$ Hence, $(w_a)_{50}(w_a)_0 \text{ or } w_2 > w_1 \text{ or } w_1 < w_2$

16. (c)

Time period $T = 2\pi \sqrt{\frac{m}{k}}$ $T = 2\pi \sqrt{\frac{x}{g}}$ $(0.5)^2 = 4\pi^2 \times \sqrt{\frac{x}{10}}$ $\frac{(0.5)^2 \times 9.8}{4 \times 3.14 \times 3.14} = x$ x = 0.0621 m x = 6.2 cm

17. (b)

From the given circuit $V_A - (6 \times 2) - 12 - (9 \times 2) + 4 - (5 \times 2) = V_B$ Or $V_A - 12 - 12 - 18 + 4 - 10 = V_B$ Or $V_A - V_B = 48$ volt

JEE MAIN PRACTICE PAPER 2024-2025

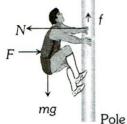
18. (a)

When a piece of glass is heated, due to low thermal conductivity it does not conduct heat fast. Hence unequal expansion of it's layers crack the glass

$$\tau_{\max} = NiAB = 1 \times i \times (\pi r^2) \times B \quad \left[2\pi r = L, \Rightarrow r = \frac{L}{2\pi}\right]$$
$$\tau_{\max} = \pi i \left(\frac{L}{2\pi}\right)^2 B = \frac{L^2 i B}{4\pi}$$

20. (c)

Here, $\mu = 0.8$. Let *F* be horizontal force that the body is applying on the pole. The various forces are acting on the boy as shown in the figure



= FOI

Frictional force, $f = \mu N = mg$ $N = \frac{mg}{\mu} = \frac{40 \times 10}{0.8} = 5000N \Rightarrow F = N = 500 N$

21. (4)

Number of Nuclei decayed in time *t*, $N_d = N_0(1 - e^{-\lambda t})$ $\therefore \% \text{ decayed} = \left(\frac{N_d}{N_0}\right) \times 100$ $= (1 - e^{-\lambda t} d) \times 100$...(i) Hence, $\lambda = \frac{0.693}{138} = 5 \times 10^{-4} s^{-1}$ $\therefore \% \text{ decayed} = (\lambda t) \times 100$ $= (5 \times 10^{-4})(80)(100)$ = 4

22. (6)

ANBP is cross-section of a cylinder of length *L*. The line charge passes through the centre *O* and perpendicular to paper.

www.neetjeenotes.com

CODE -04

$$AM = \frac{a}{2}, MO = \frac{\sqrt{3}a}{2}$$

$$\therefore \angle AOM = \tan^{-1}\left(\frac{AM}{OM}\right)$$
$$= \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$$

Electric flux passing from the whole cylinder

$$\phi_1 = \frac{q_{\rm in}}{\varepsilon_0} = \frac{\lambda L}{\varepsilon_0}$$

: Electric flux passing through ABCD plane surface (shown only AB) = Electric flux passing through cylindrical surface ANB

$$= \left(\frac{60^{\circ}}{360^{\circ}}\right)(\phi_1)$$
$$= \frac{\lambda L}{6\varepsilon_0}$$
$$\therefore n = 6$$

23. (2)

$$AB = 2 R \cos \theta$$

$$AB = \frac{1}{2} g \cos \theta t^{2} \Rightarrow 2 R \cos \theta = \frac{1}{2} g \cos \theta t^{2}$$

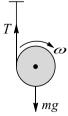
$$2 \sqrt{\frac{R}{g}} = t \Rightarrow 2 \sqrt{\frac{10}{10}} = t = 2s$$

24. (8)

After long time, from conservation of momentum $mv_0 = 2mv; v = \frac{v_0}{2} = 8 \text{ m/s}$

25. (5)

Let T be the tension in the thread and f, the linear acceleration of the reel as it fails



For the downward translation

 $(mg - T) = mf \quad (i)$

For the rotational motion of the reel, angular acceleration is $\alpha = \left(\frac{f}{a}\right)$ and $T = \frac{mg}{3}$ (ii)

From Eqs (i) and (ii), $T = mg - mf = mg - ma\alpha$

$$= mg - 2T$$
$$\Rightarrow 3T = mg$$

$$\therefore T = \frac{mg}{3} = 1.5 \times 10/3 = 5 \text{ N}$$

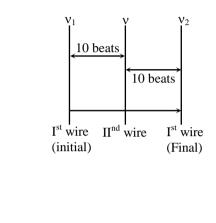
26. Ans. 0030

Sol. Self Teacher

27. Ans. 4

Sol. Frequency of first wire is less than that of second wire as upon increasing tension beats frequency remains unchanged. $\therefore v = v_1 + 10 = 210 \text{ Hz}$

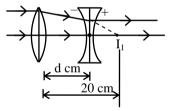
 $\therefore \nu - 206 = 4$



28. Sol.
$$F = Ma$$
(i)
 $\frac{3}{2}$ Mg. $2R - F.R = \frac{MR^2}{2} \cdot \frac{a}{R}$ (ii)
 $a = 2g$
 $\therefore F = 2Mg \le \mu N$

29. Ans. 1 Sol.

501.



$$V = \infty$$

$$U = + (20 - d)$$

$$f = -10$$

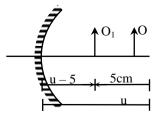
$$\frac{1}{-10} = \frac{1}{\infty} - \frac{1}{(20 - d)}$$

$$-\frac{1}{10} = -\frac{1}{20 - d}$$

$$20 - d = 10$$

$$d = 10 \text{ cm}$$

30. Ans. 0002 Sol.



$$m = -\frac{1}{4}$$
 $-\frac{v}{u} = -\frac{1}{4}$; $4v = u$...(1)

 $\frac{1}{f} = \frac{1}{v_1} + \frac{1}{u_1}; \quad m = -\frac{1}{2}$ $\frac{v_1}{u_1} = \frac{1}{2} \implies u_1 = 2v_1$ $u_1 = 3f \qquad \dots (2)$ $\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \implies \frac{1}{f} = \frac{5}{v}$ $u = 5 f \qquad \dots (3)$ $u - u_1 = 5$ $5f - 3f = 5 \implies f = 2.5 \text{ cm}$

CHEMISTRY

1. (b)

The size of isoelectronic species increases with decrease in effective nuclear charge.

2. (b)

In addition homopolymers such as Teflon, empirical formula resembles with monomer.

3. (d)

4. (c)

d-block elements have higher melting point due to greater forces of attraction between two atoms.

5. (a)

The H - 0 - H angle in water molecule is about 105° (due to two lone pairs of electrons)

6. (d)

Volume of the gold dispersed in one litre water

 $= \frac{\text{mass}}{\text{density}} = \frac{1.9 \times 10^{-4}\text{g}}{19\text{g cm}^{-3}}$ $= 1 \times 10^{-5} \text{cm}^{-3}$ Radius of gold sol particle =10 nm $= 10 \times 10^{-9}\text{m} = 10 \times 10^{-7} \text{cm}$ Volume of the gold sol particle $= \frac{4}{3}\pi r^{3}$ $= \frac{4}{3} \times \frac{22}{7} \times (10^{-6})^{3}$ $= 4.19 \times 10^{-18} \text{cm}^{3}$ Number of gold sol particle in 1× 10⁻⁵ cm³ $= \frac{1 \times 10^{-5}}{4.19 \times 10^{-18}}$ $= 2.38 \times 10^{12}$ Number of gold sol particle in one mm³ $= \frac{2.38 \times 10^{12}}{10^{6}}$ $= 2.38 \times 10^{6}$

7. (c)

Larger is the difference in electronegativities of two atom, more is polar character in bond.

8. (b)

 $2 \times 1 + a + 4 \times (-2) = 0$ $\therefore a = +6$

9. (b)

Rest all replace —OH by —Cl.

10. (a) 11. (c)

Simple cations such as Ag⁺, Cu²⁺, Fe³⁺ etc. can accept pairs of electrons and hence are Lewis acids.

12. (b)

A derivation for mean free path of gas.

13. (b)

 $2CaO + 2Cl_2 \rightarrow CaCl_2 + Ca(ClO)_2$

```
14. (c)
15. (b)
```

No. of Na atoms present at each corner $= 8 \times \frac{1}{8} = 1$ No. of O atoms present at the centre of edges $= 12 \times \frac{1}{4} = 3$ No. of W atoms present at the centre of cube = 1

Formula of the compound = NaWO₃

(d)
 (b)
 (a)
 (b)

 $N = \frac{4 \times 1000}{40 \times 100} = 1.0$

20. (c)

It is a reason for given fact for given fact

21. (1)22. (0)

All photochemical reactions have zero order of reaction

23. (6)

24. (4)

25. (2)

26. Sol. The maximum work done by the system

JEE MAIN PRACTICE PAPER 2024-2025

$$= P_{2} (V_{2} - V_{1}) = P_{2} \left(\frac{nRT}{P_{2}} - \frac{nRT}{P_{1}} \right) = mgh$$

ormgh = nRT $\left(1 - \frac{P_{2}}{P_{1}} \right)$
ormass lifted, m = $\frac{nRT}{gh} \left(1 - \frac{P_{2}}{P_{1}} \right)$
 \therefore Mass lifted during expansion = m
= $\frac{nRT}{gh} \left(1 - \frac{P_{2}}{P_{1}} \right)$ Work done on the system during the compression
= $P_{1} (V_{2} - V_{1}) = P_{1} \left(\frac{nRT}{P_{2}} - \frac{nRT}{P_{1}} \right) = nRT \left(\frac{P_{1}}{P_{2}} - 1 \right)$
Let net mass lowered during the compression = m'
 \therefore m'gh = nRT $\left(\frac{P_{1}}{P_{2}} - 1 \right)$
 $orm' = \frac{nRT}{gh} \left(\frac{P_{1}}{P_{2}} - 1 \right)$
 \therefore net mass lowered through a height h = m''
 \therefore m'' = m' - m = $\frac{nRT}{gh} \times \frac{(P_{1} - P_{2})^{2}}{P_{2}P_{1}}$
 $(P_{1} - P_{2})^{2}$ is always positive hence m'' is positive.
27. Ans. 4

28. Ans. 750Å

29. Ans. 1 Sol. $\Delta U = Q + W$ $\Rightarrow \Delta U = Q_V \quad (W = 0 \text{ at constant volume})$ $= m \times s \times \Delta t$ (m = mass of gas s = specific heat) $= 0.5 \times 40 \times (20.814 - 8.314) \times 4$ Joule = 1 KJ

30. Ans.0833

1. (d)

MATHS

(a) It is clear that A is not a zero matrix.
(b)
$$(-1)I = -1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \neq A$$

ie, $(-1)I \neq A$
(c) $|A| = 0 \begin{vmatrix} -1 & 0 \\ 0 & 0 \end{vmatrix} - 0 \begin{vmatrix} 0 & 0 \\ -1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix}$
 $= 0 - 0 - 1(-1) = 1$
Since, $|A| \neq 0$ so A^{-1} exists.
(d) $A^2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$

$$\Rightarrow A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow A^{2} = A^{2}$$

We have, $\tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$ $= (\tan 9^{\circ} + \tan 81^{\circ}) - (\tan 27^{\circ} + \tan 63^{\circ})$ $= (\tan 9^{\circ} + \cot 9^{\circ}) - (\tan 27^{\circ} + \cot 27^{\circ})$ $= \frac{1}{\sin 9^{\circ} \cos 9^{\circ}} - \frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$ $= \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin 54^{\circ}}$ $= 2\frac{\sin 54^{\circ} - \sin 18^{\circ}}{\sin 54^{\circ} \sin 18^{\circ}} = 2\frac{\cos 36^{\circ} - \sin 18^{\circ}}{\sin 18^{\circ} \cos 36^{\circ}} = 4$

3. (a)

 \therefore 26 cards can be chosen out of 52 cards in $\square^{52}C_{26}$ ways. There are two ways in which each card can be dealt because a card can be either from the first pack or from the second. ∴Total number of ways= $\square^{52}C_{26}$. 2²⁶

Required ratio is given by $-\frac{3 \times 1 + 3 - 9}{3 \times 2 + 7 - 9}$ $= \frac{3}{4}$ *ie*, 3: 4 internally

We have,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(x) + f(h) - f(x)}{h} [\because f(x+y) = f(x) + f(y)]$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{f(h)}{h}$$

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{\sin h \ g(h)}{h} = \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} g(h) = g(0) = k$$

6. (b)

We have,

$$\int \frac{a^{\sqrt{x}}}{\sqrt{x}} dx = 2 \int \frac{a^{\sqrt{x}}}{2\sqrt{x}} dx = 2 \int a^{\sqrt{x}} d(\sqrt{x}) = \frac{2a^{\sqrt{x}}}{\log a} + C$$
7. (c)

...(i)

Given,
$$y = \sin^{-1} x$$

 $\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

1

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{0 - \frac{1}{2} \cdot \frac{(-2x)}{\sqrt{1 - x^{2}}}}{(\sqrt{1 - x^{2}})^{2}}$$

$$\Rightarrow (1 - x^{2}) \frac{d^{2}y}{dx^{2}} = x \frac{dy}{dx} \dots [\text{from Eq.(i)}]$$

8. (c)
9. (a)

$$x^{y} = e^{2(x - y)}$$

$$\Rightarrow y (\log x + 2) = 2x$$

$$y = \frac{2x}{\log x + 2}$$

$$\frac{dy}{dx} = \frac{(\log x + 2)(2) - 2x \cdot \frac{1}{x}}{(\log x + 2)^{2}}$$

$$= \frac{2\log x + 4 - 2}{(\log x + 2)^{2}} = \frac{2(\log x + 1)}{(\log x + 2)^{2}}$$

10. (b)
Given limiting points are (1, 2), (-2, 1)
The mid point is $\left(-\frac{1}{2}, \frac{3}{2}\right)$
Now, slope $= \frac{1 - 2}{-2 - 1} = \frac{1}{3}$
 \therefore required equation, $y - \frac{3}{2} = -3\left(x + \frac{1}{2}\right)$
11. (c)

Since, $AM \ge GM$ $\Rightarrow \frac{a+b}{2} \ge \sqrt{ab}$ $\Rightarrow \frac{a+b}{2} \ge \sqrt{4} \quad (\because ab = 4, \text{given})$ $\Rightarrow a + b \ge 4$

12. (d)

Given, $f(x) = ax + \frac{b}{x}$ On differentiating w.r.t. *x*, we get $f'(x) = a - \frac{b}{x^2}$ For maxima or minima, put f'(x) = 0 $\Rightarrow x = \sqrt{\frac{b}{a}}$ Again, differentiating w.r.t. *x*, we get $f''(x) = \frac{2b}{x^3}$ At $x = \sqrt{\frac{b}{a}}$, f''(x) = +ve

BY SWADHIN SIR

 \Rightarrow 3x + y = 0

⇒ f(x) is minimum at $x = \sqrt{\frac{b}{a}}$ ∴ f(x) has the least value at $x = \sqrt{\frac{b}{a}}$

13. (d)

Given,
$$\tan^{-1}(x-1) + \tan^{-1}x = \tan^{-1}3x - \tan^{-1}(x+1)$$

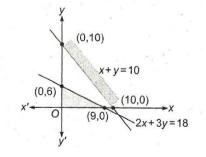
 $\Rightarrow \tan^{-1}\left[\frac{(x-1)+x}{1-(x-1)x}\right] = \tan^{-1}\left[\frac{3x-(x+1)}{1+3x(x+1)}\right]$
 $\Rightarrow (1+3x^2+3x)(2x-1) = (1-x^2+x)(2x-1)$
 $\Rightarrow (2x-1)(4x^2+2x) = 0$
 $\Rightarrow x = 0, \pm \frac{1}{2}$

14. (b)

Let the vertices of a triangle be A(6, 0), B(0, 6) and C(6, 6)Now, $AB = \sqrt{6^2 + 6^2} = 6\sqrt{2}$ $BC + \sqrt{6^2 + 0} = 6$ And $CA = \sqrt{0 + 6^2} = 6$ Also, $AB^2 = BC^2 + CA^2$ Therefore, $\triangle ABC$ is right angled at *C*. So, mid point of *AB* is the circumcentre of $\triangle ABC$ \therefore Coordinate of circumcentre are (3, 3) Coordinates of centroid are, $G\left(\frac{6+0+6}{3}, \frac{0+6+6}{3}\right)$, *ie*, (4, 4) \therefore Required distance = $\sqrt{(4-3)^2 + (4-3)^2} = \sqrt{2}$

15. (d)

From the figure it is clear that there is no common area. So, we cannot find maximum value of z



16. (c)

We have, $p \leftrightarrow q \cong (p \rightarrow q) \land (q \rightarrow p)$ $\cong (\sim p \lor q) \land (\sim q \lor p)$ $\therefore \sim (p \leftrightarrow q) \cong \sim (\sim p \lor q) \lor \sim (\sim q \lor p)$ $\cong (p \land \sim q) \lor (q \land \sim p)$

JEE MAIN PRACTICE PAPER 2024-2025

Equation of the line passing through (5, 1, a) and (3, b, 1) is $\frac{x-3}{5-3} = \frac{y-b}{1-b} = \frac{z-1}{a-1}\dots(i)$ Also, point $\left(0, \frac{17}{2}, -\frac{13}{2}\right)$ satisfies Eq. (i), we get

$$-\frac{3}{2} = \frac{\frac{17}{2} - b}{1 - b} = \frac{-\frac{13}{2} - 1}{a - 1} - \frac{15}{2}$$

From Ist and IIIrd terms $a - 1 = \frac{2}{\left(-\frac{3}{2}\right)} \Longrightarrow a = 6$ From Ist and IIIed terms $-3(1-b) = 2\left(\frac{17}{2} - b\right) \Longrightarrow b = 4$

18. (a)

$$\begin{split} & \square^{50}C_4 + \square^{55}C_3 + \square^{54}C_3 + \square^{53}C_3 + \square^{52}C_3 + \square^{51}C_3 + \square^{50}C_3 \\ & = \square^{51}C_4 + \square^{51}C_3 + \square^{52}C_3 + \square^{53}C_3 + \square^{54}C_3 + \square^{55}C_3 \\ & [\because \square^n C_r + \square^n C_{r-1} = \square^{n+1}C_r] \\ & = \square^{52}C_4 + \square^{52}C_3 + \square^{53}C_3 + \square^{54}C_3 + \square^{55}C_3 \\ & = \square^{53}C_4 + \square^{53}C_3 + \square^{54}C_3 + \square^{55}C_3 \\ & = \square^{54}C_4 + \square^{54}C_3 + \square^{55}C_3 = \square^{55}C_4 + \square^{55}C_3 = \square^{56}C_4 \end{split}$$

19. (c)

Given $P(A \cup B) = 0.6$, $P(A \cap B) = 0.3$ $\therefore P(A') + P(B')$ $= 1 - P(A) + 1 - P(B) = 2 - \{P(A) + P(B)\}$ $= 2 - \{P(A \cup B) + P(A \cap B)\}$ $= 2 - \{0.6 + 0.3\} = 2 - 0.9 = 1.1$ (c) Given $P(A \cup B) = 0.6$, $P(A \cap B) = 0.3$ $\therefore P(A') + P(B')$ $= 1 - P(A) + 1 - P(B) = 2 - \{P(A) + P(B)\}$ $= 2 - \{P(A \cup B) + P(A \cap B)\}$ $= 2 - \{P(A \cup B) + P(A \cap B)\}$ $= 2 - \{0.6 + 0.3\} = 2 - 0.9 = 1.1$ 20. (b)

Since, α and β the roots of the equation $x^2 - x - 1 = 0$ $\therefore \alpha + \beta = 1$ and $\alpha\beta = -1$ Hence, AM of A_{n-1} and $A_n = \frac{A_{n-1} + A_n}{2}$ $= \frac{\alpha^{n-1} + \beta^{n-1} + \alpha^n + \beta^n}{2}$ $= \frac{\alpha^{n-1} (1 + \alpha) + \beta^{n-1} (1 + \beta)}{2}$ $= \frac{\alpha^{n-1} \cdot \alpha^2 + \beta^{n-1} \beta^2}{2}$ $= \frac{1}{2} (\alpha^{n+1} + \beta^{n+1})$ $= \frac{1}{2} A^{n+1}$

21. (9)

Given f(x + 2) = f(x) + f(2)Put x = -1, we have f(1) = f(-1) + f(2) $\Rightarrow f(1) = -f(1) + f(2)$ (as f(x) is an odd function) $\Rightarrow f(2) = 2f(1) = 6$ Now put x = 1, We have f(3) = f(1) + f(2) = 3 + 6 = 9

22. (0)

 $a, b, c \text{ are in A.P} \Rightarrow b = \frac{a+c}{2} \quad (1)$ $b, c, d \text{ are in G.P.} \Rightarrow c^2 = bd \quad (2)$ And $c, d, e \text{ are in H.P.} \Rightarrow d = \frac{2ce}{c+e} \quad (3)$ Now $c^2 = bd \quad \Rightarrow c^2 = \left(\frac{a+c}{2}\right) \left(\frac{2ce}{c+e}\right) \quad [\text{using (1) and (3]}$ $\therefore c^2 + ce = ae + ce$ $\Rightarrow c^2 = ae$ Now given a = 2 and e = 18 $\therefore c^2 = ae \Rightarrow c^2 = 2 \times 18 = 36 \Rightarrow c = 6 \text{ or } -6$

23. (6)

Here $\vec{O}A = \vec{a}, \vec{O}B = 10 \ \vec{a} + 2\vec{b}, \vec{O}C = \vec{b}$ q = Area of parallelogram with OA and OC as adjacent sides $\therefore q = |\vec{a} \times \vec{b}|$ (i) $\overrightarrow{O} = \vec{a} + 2\vec{b}$ $\overrightarrow{O} = \vec{a} + 2\vec{b}$ \overrightarrow{A} p = Area of quadrilateral OABC $= \text{Area of } \Delta OAB + \text{Area of } \Delta OBC$ $= \frac{1}{2} |\vec{a} \times (10\vec{a} + 2\vec{b})| + \frac{1}{2} |(10\vec{a} + 2\vec{b}) \times \vec{b}|$ $= |\vec{a} \times \vec{b}| + 5 |\vec{a} \times \vec{b}|$ $\therefore p = 6 |\vec{a} \times \vec{b}|$

$$0r p = 6 q$$
$$\therefore k = 6$$

```
\begin{aligned} x + y + z &= 1(1) \\ x + 2y + 4z &= p \ (2) \\ x + 4y + 10z &= p^2 \ (3) \\ \Delta &= \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 4 & 10 \end{vmatrix} \\ R_1 \to R_1 - R_2, R_2 \to R_2 - R_3 \end{aligned}
```

[From Eq. (i)]

 $\begin{vmatrix} 0 & -1 & -3 \\ 0 & -2 & -6 \\ 1 & 4 & 10 \end{vmatrix} = 0$ Since $\Delta = 0$, solution is not unique solution. The system will have infinite solutions if $\Delta_1 = 0, \Delta_2 = 0, \Delta_3 = 0$ $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ p & 2 & 4 \\ p^2 & 4 & 10 \end{vmatrix} = 0$ $C_3 \rightarrow C_3 - C_2$ $\Delta_1 = \begin{vmatrix} 1 & 1 & 0 \\ p & 2 & 2 \\ p^2 & 4 & 6 \end{vmatrix} = 0$ $\Rightarrow 1(12 - 8) - 1(6p - 2p^2) = 0$ $\Rightarrow 4 - 6p + 2p^2 = 0$

$$\Rightarrow 2(p^2 - 3p + 2) = 0$$
$$\Rightarrow p^2 - 3p + 2 = 0$$

$$\Rightarrow p = 1 \text{ or } 2$$

Also for these values of p, Δ_2 , $\Delta_3 = 0$

25. (3)

$$\lim_{x \to 2} \frac{(10-x)^{1/3}-2}{x-2}$$

$$= \lim_{h \to 0} \frac{(10-x)^{1/3}-2}{h} \quad (Put \ x = 2+h)$$

$$= \lim_{h \to 0} \frac{2\left(1-\frac{h}{8}\right)^{1/3}-2}{h}$$

$$= 2\lim_{h \to 0} \frac{\left(1-\frac{h}{8}\right)^{1/3}-1}{h}$$

$$= 2\lim_{h \to 0} \frac{1-\frac{1}{3}\frac{h}{8}-1}{h} = -\frac{1}{12}$$

26. Ans. 0016

Sol. Any point on curve $y = x^3$ is of form (t, t³) and dy $= 3t^{2}$ $\left. dx \right|_{(t,t^3)}$ Equation of tangent at (t, t^3) is $y - t^3 = 3t^2 (x - t)$ \Rightarrow 3t²x - y - 2t³ = 0 ...(i) The intersection of (i) with $y = x^3$ is given by $3t^3 x - x^3 - 2t^3 = 0$ $3x (t^2 - x^2) + 2(x^3 - t^3) = 0$ $(x-t) \left[-3x^2 - 3xt + 2x^2 + 2t^2 + 2xt \right] = 0$ $(x-t)(-x^2 - xt + 2t^2) = 0$ x = t or x = 2tTherefore, the tangent at x = t meets $y = x^3$ at point P₂ (t_2, t_2^3) when $t_2 = -2t$ The abscissae of P_1, P_2, \ldots, P_n are $t, -2t \ldots (-2)^{n-1} t(G.P.)$ Area of $\Delta P_1 P_2 P_3 = \frac{1}{2} \begin{vmatrix} t & t^3 & 1 \\ -2t & -8t^3 & 1 \\ 4t & 64t^3 & 1 \end{vmatrix}$

$$= \frac{1}{2} t^{4} \begin{vmatrix} 1 & 1 & 1 \\ -2 & -8 & 1 \\ 4 & 64 & 1 \end{vmatrix} \models \frac{1}{2} t^{4} \begin{vmatrix} 1 & 1 & 1 \\ 0 & -6 & 3 \\ 0 & 60 & -3 \end{vmatrix}$$

(from $R_{2} \rightarrow R_{2} + 2R_{1}, R_{3} \rightarrow R_{3} - 4R_{1})$
$$= \frac{1}{2} t^{4} \times 162 = 81 t^{4}$$
area of $\Delta P_{2}P_{3}P_{4} = 81 t^{4}_{2} \frac{\text{area of } \Delta P_{1}P_{2}P_{3}}{\text{area of } \Delta P_{2}P_{3}P_{4}} = \left(\frac{t}{t_{2}}\right)^{4}$
$$= \left(\frac{-1}{2}\right)^{4} = \frac{1}{16}$$
$$\therefore \frac{\text{area of } \Delta P_{2}P_{3}P_{4}}{\text{area of } \Delta P_{1}P_{2}P_{3}} = 16$$

27. Ans. 0 Sol. Obvious

28. Ans. 0001

Sol. a + b + c = 3 a + b = 3 - c [a + b] = [3 - c] = 1 $\Rightarrow 1 < c \le 2$ Area $A = \frac{1}{2} \frac{1}{3 - c}$

for A maximum 3 - c should be minimum

$$A_{max} = \frac{1}{2}$$
$$2A = 1$$

29.8

$$y = f(t) \text{ Where } t = \frac{2x+3}{3-2x}$$

$$\Rightarrow \frac{dy}{dx} = f'(t) \times \frac{dt}{dx} = \sin\left(\log\frac{2x+3}{3-2x}\right) \times \frac{12}{(3-2x)^2}$$

$$B = 12, A = 2$$

$$B - 2A = 8$$

30. Ans. 0001