www.neetjeenotes.com		CODE	-03	JEE MAIN PRACTICE PAPER 2024-2025			
		P	PHYSICS				
		Single Co	orrect Answer Ty	тре			
1.	In a fission reaction $\lim_{92} U^{236}$	$S^{5} = X^{117} + Y^{117} + n + n, t$	the binding energy	per nucleon of X	and Y is 8.5 MeV, wherea	as of	
	U ²³⁶ is 7.6 MeV.The total ene	rgy liberated will be abou	ıt	-			
	a) 200 keV	b) 2 MeV	c) 200 MeV	V	d) 2000 MeV		
2.	Reactance of a capacitor of c	apacitance $C\mu F$ for ac free	quency $\frac{400}{2}$ Hzis 25	Ω. The value <i>C</i> is			
	a) $50\mu F$ b)	$25\mu F$ c) $100\mu F$	(d) $75\mu F$				
3.	as 50μ by 25μ c, 100μ as 75μ . 3 The diagram shows the energy levels for an electron in a certain atom. Which transition shown represents the omission of						
	a photon with the most ener	gy?					
	4 <i>n</i> =						
Î	3 n=						
	2 <i>n</i> =						
	t 1						
··	"						
	a) III	b) IV	c) I		d) II		
4.	Which one of the following u	nits is not that of mutual	inductance?				
	a) Henry		b) (Weber)	$)^{-1}$			
	c) Ohm second	d) Volt second (a	mpere) ⁻¹				
5.	A transverse wave propagati	ing on a stretched string o	of liner density 3 $ imes$	$10^{-4} \text{ kg} - \text{m}^{-1} \text{ is}$	represented by the equa	ationy =	
	0.2 $\sin(1.5x + 60t)$ where x	is in meter and <i>t</i> is in sec	cond. The tension i	n the string (in ne	wton) is		
	a) 0.24						
	b) 0.48						
	c) 1.20						
	d) 1.80						
c	A gao un dorgo o a nue coos in	which its processor a and	l volumo V oro rola	u to d as W^n — some	tent The bull modulus	fortho	
0.	as in this process is	i which its pressure p and	i volulle v ale lela	$p^{+}=cons$	tant. The bulk modulus	ior the	
	a) nn	b) $n^{1/n}$	c) $\frac{p}{p}$		d) n^n		
	ajnp	υ <i>ρ</i> .	cj _n		ujp		
7	An annuaction for the mean	tic field strongth Dat the	noint hotoroon the		ndiantaa in fianna annaa	a Din	
/.	An expression for the magne	tic field strength <i>B</i> at the	b <i>ia dE (dt</i> between the	e capacitor plates i	indicates in figure expres	ss <i>B</i> in	
	$\mu_0 i$	$\epsilon_0 \mu_0 r dr / dr$		en the plates	μ ₀ ί		
	a) $\frac{1}{2\pi r}$	$bJ \frac{dE}{2} dE/dt$	cj Zero		$d \int \frac{1}{2r}$		
8.	An electron, moving in a unif	form magnetic field of ind	uction of intensity	\vec{B} , has its radius of	lirectly proportional to		
	a) Its charge	b) Magnetic field	c) Speed		d) None of these		
				2			
9.	A particle starts from rest at	t = 0 and undergoes an a	acceleration a in <i>m</i>	s^{-2} with time t in	seconds which is as sho	wn	
T	3						
0							
	$1 2 3 4 \longrightarrow t$						
-3		ok woowoog ta 1 * (- 1	<i>I</i> in m _c - 1	time of the second			
W	lich one of the following pl	ot represents velocity V	in <i>ms</i> + versus	time t in second	S		
1							

10. Which of the following statements is not true

a) While taking reading of tangent galvanometer, the plane of the coil must be set at right angles to the earth's magnetic meridian

b) A short magnet is used in a tangent galvanometer since a long magnet would be heavy and may not easily move

- c) Measurement with the tangent galvanometer will be more accurate when the deflection is around 45°
- d) A tangent galvanometer can not be used in the polar region
- **11.** Molecular motion shows itself as

a) Temperature b) Internal Energy c) Friction d) Viscosity
 12. A solid substance is at 30°C. To this substance heat energy is supplied at a constant rate. Then temperature versus time graph is as shown in the figure. The substance is in liquid state for the portion (of the graph)

13. A second's pendulum is mounted in a rocket. Its period of oscillation decreases when the rocket

- a) Comes down with uniform acceleration
- b) Moves round the earth in a geostationary orbit
- c) Moves up with a uniform velocity
- d) Moves up with uniform acceleration
- **14.** A star is going away from the earth. An observer on the earth will see the wavelength of light coming from the star a) Decreased
 - b) Increased
 - c) Neither decreased nor increased
 - d) Decreased or increased depending upon the velocity of the star
- **15.** In the following circuit, 18Ω resistor develops 2J/sec due to current flowing through it. The power developed across 10Ω resistance is

16. The figure represents variation of triode parameter (μ or r_p or g_m) with the plate current. The correct variation of μ and r_p are given, respectively by the curves

www.neetjeenotes.com	COI	DE -03	JEE MAIN PRACTICE PAPE	ER 2024-2025			
$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $							
a) <i>A</i> and <i>B</i>	b) <i>B</i> and <i>C</i>	c) A and	<i>C</i> d) None of the	he above			
17. A particle executing simpl its acceleration is 0.5 <i>m/s</i>	17. A particle executing simple harmonic motion with amplitude of 0.1 <i>m</i> . At a certain instant when its displacement is 0.02 <i>m</i> , its acceleration is 0.5 m/s^2 . The maximum velocity of the particle is (in m/s)						
a) 0.01	b) 0.05	c) 0.5	d) 0.25				
18. A steel wire of cross-sectional area 3 $\times 10^{-6}$ m ² can withstand a maximum strain of 10^{-3} . Young's modulus of steel is 2×10^{11} Nm ⁻² . The maximum mass the wire can hold is (take g = 10 ms ⁻²)							
a) 40 kg	b) 60 kg	c) 80 kg	d) 100 kg				
19. Positive and negative point charges of equal magnitude are kept at $\left(0,0,\frac{a}{2}\right)$ and $\left(0,0,\frac{-a}{2}\right)$, respectively. The work done by the electric field when another positive point charge is moved from $(-a, 0,0)$ to $(0, a, 0)$ is a) Positive							
c) Zero							
d) Depends on the path	ι connecting the initial	and final position	IS				
20. The working of venturime a) Torricelli's law	ter is based on	b) Pascal	's law				
c) Bernoulli's theorem d) Archimede's principle							
	Int	teger Answer Typ	e				
21. Two inductors L_1 (inductance 1 mH, internal resistance 3 Ω) and L_2 (inductance 2 mH, internal resistance 4 Ω), and a resistor R (resistance 12 Ω) are all conducted in parallel across a 5 V battery. The circuit is switched on at time $t = 0$. The ratio of the maximum to the minimum current (I_{maz}/I_{min}) drawn from the battery is							
22. A particle having charge that of an electron and mass 1.6×10^{-30} kg is projected with an initial speed u at an angle 45° to the horizontal from the lower plate of a parallel-plate capacitor as shown in the figure. The plates are sufficiently long and have separation 2 cm. the maximum value of velocity of particle not to hit the upper plate is $\sqrt{W} \times 10^6$ m/s. take electric field between the plates as 10^3 V/m directed upward. Find W							
2 cm							
23. A boy is pushing a ring of mass 2 kg and radius 0.5 m with a stick as shown in the figure. The stick applies a force of 2 N on the ring and rolls it without slipping with an acceleration of 0.3m/s^2 . The coefficient of friction between the ground and the ring is large enough that rolling always occurs and the coefficient of friction between the stick and the ring is (<i>P</i> /10). The							

- **24.** The activity of a freshly prepared radioactive sample is 10^{10} disintegration per second, whose mean life is 10^{-9} s. The mass of an atom of this radioisotope is 10^{-25} kg. The mass (in mg) of the radioactive sample is
 - **25.** In a square cut, the speed of the cricket ball changes from 30 m/s to 40 m/s during the time of its contact $\Delta t = 0.01$ s with the bat. If the ball is deflected by the bat through an angle of $\theta = 90^{\circ}$, find the magnitude of the average acceleration (in $\times 10^{2}$ m/s²) of the ball during the square cut
 - 26. A point P is located on the rim of wheel of radius r = 0.5 m which rolls without slipping along a horizontal surface then the total distance traversed by the point P in meters between two successive moments it touches the surface.
 - 27. A homogeneous rod of mass 3 kg is pushed along smooth horizontal surface by a horizontal force F = 40 N. The angle '0' (in degree) for which rod has pure translation motion minus 30 degree is (g = 10m/s²) –

28. A charge particle of charge q and mass m is projected in a region which contains electric and magnetic field as shown in figure with velocity V at an angle 45° with x-direction. If $V = \sqrt{\frac{qE}{m}}$, then net deviation in particle motion will be (neglect the effect of gravity) in clockwise direction approx in radian

29. Consider a uniformly charged spherical shell of radius R as shown in figure. Calculate the force experienced by the upper half of shell

30. A ball is thrown upwards from the foot of a tower. The ball crosses the top of tower twice after an interval of 4 seconds and the ball reaches ground after 8 seconds, then the height of tower in meters is : $(g = 10 \text{ m/s}^2)$

CHEMISTRY

- b) The ratio of their charge to size is nearly the same
- c) Both have similar electronic configuration
- d) Both are found together in nature
- **11.** The solubility order for the following gases is :

a) $NH_3 > CO_2 > O_2 > H_2$

ww	w.neetjeenotes.com	CODE -03	JEE MAIN PRA	ACTICE PAPER 2024-2025				
	b) $H_2 > O_2 > NH_3 > CO_2$ c) $CO_2 > NH_3 > O_2 > N_2$ d) $O_2 > H_2 > NH_3 > CO_2$							
12.	Anti-allergy drugs are a) Antimicrobials	b) Antihistamines	c) Antivirals	d) Antifungals				
13.	Soaps are generally prepared a) Linseed oil	from : b) Coconut oil	c) Groundnut oil	d) Mustard oil				
14.	. H <i>A</i> is a weak acid. The pl a) 0.5	H of 0.1 M H <i>A</i> solution is 2 b) 0.2	2. What is the degree of c c) 0.1	lissociation (α) of H <i>A</i> ? d) 0.301				
15.	 H₂O₂ acts as an oxidizing age a) Neutral medium b) Acidic medium c) Alkaline medium d) acidic as well as in alka 	nt in: lline medium						
16.	Grignard reagent shows addit	tion on:						
	a) >c=o	b) —C≡N c) >	c=s d) All of the descent of the	hese				
17.	Which is planar molecule? a) XeO ₄	b) XeF ₄	c) XeOF ₄	d) XeO ₂ F ₂				
18.	Thiokol is a							
	a) fibre	b) Plastic	c) Rubber	d) Monomer				
19	The molecular formula of her	zonitrile is						
1.7.	a) C_6H_5CN	b) C ₆ H ₅ NC	c) C ₆ H ₅ CNO	d) C ₆ H ₅ NCO				
20.	How many moles of lead (II) a) 0.333	chloride will be formed from a b) 0.011	a reaction between 6.5 g of Pb c) 0.029	0 and 3.2 g of HCl? d) 0.044				
		Integer Ar	iswer Type					
21.	 What is order of reaction for which rate becomes half if volume of the container having same amount of reactant is doubled? Assume gaseous phase reaction 							
22. 23.	$ \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	utron and disintegrates into b) 2 neutrons c) bitals is [CoF ₆] ^{3–}	\mathbb{I}_{54} Xe ¹³⁹ , \mathbb{II}_{38} Sr ⁹⁴ , and <i>x</i> . What 2 α -particles d)	at will be the product <i>x</i> ? 2 β-particles				
24. Hea	Out of the following propertie at enthalpy, internal energy	es how many are path functior , Temperature, Work, Heat,	ns? Specific heat					
25.	<i>E</i> ° for a cell having 2 electron The value of <i>a</i> is	s involved in redox change is (0.2655 V. The equilibrium cor	istant for the redox change is 10^a .				
26.	At 27° C, $\Delta H_{\text{combustion}}$ (sucrose) Calculate additional work (in k 310 K.	= $-6000 \text{ kJ/mol } \& \Delta G_{\text{combustion}}$ (J/mol) that may be obtained by	(sucrose) = – 6600 kJ/mol. metabolism of sucrose in bloo	d when blood temperature is raised to				

27. A room, cubic in shape has an edge length of 500 cm. The room temperature is 27°C and the relative humidity inside the room is 40%. How many killo-grams of anhydrous calcium oxide are required to keep the air dry in the room ? Assume ideal behaviour for water vapour.

(Given \rightarrow vapour pressure of water at 27° C

= 19 torr ; give your answer in the form of nearest integer)

28. The basicity of boric acid is

29. P toluidine reacts with benzene diazonium chloride to form compound which on boiling with Aq. H₂SO₄ give How many product.

30. In borax (Na₂ B₄O₇, 10H₂O) the number of B-O-B bonds is

MATHEMATICS

	Single Correct Answer Type							
1.	The order and degree of the following differential equation $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{5/2} = \frac{d^3y}{dx^2}$ are respectively							
	a) 3,2	b) 3,10	c) 2,3	d) 3,5				
2.	Let $f(x)$ be a function satisfyi Then.	$\inf f(x+y) = f(x) + f(y)$ and	nd $f(x) = x g(x)$ for all $x, y \in$	E R, where $g(x)$ is continuous.				
	a) $f'(x) = g'(x)$	b) $f'(x) = g(x)$	c) $f'(x) = g(0)$	d) None of these				
3.	The equation of the tangent to a) $9x + 3y + 2 = 0$	the parabola $y^2 = 8x$ which b) $3x + y + 2 = 0$	is perpendicular to the line x c) $3x - y - 1 = 0$	-3y + 8 = 0 is d) $9x - 3y + 2 = 0$				
4.	Let α , β be the roots of $x^2 - 2$ a) $x^2 - 2x \cos n\phi - 1 = 0$	$dx \cos \phi + 1 = 0$, then the equ	ation whose roots are α^n , β^n , b) $x^2 - 2x \cos n\phi + 1 = 0$	is)				
5.	C) $x^2 - 2x \sin n\phi$ In a right angled triangle, the One of the acute angle is	$x^{2} + 1 = 0$ d) $x^{2} + 1$ hypotenuse is four times as lo	$+ 2x \sin n\phi - 1 = 0$ ong as the perpendicular draw	n to it from the opposite vertex.				
	a) 15° b)	30° c) 45° d)	None of these					
6.	The area bounded by the <i>x</i> -ax	kis, part of the curve $y = 1 + \frac{1}{2}$	$\frac{8}{x^2}$ and the ordinates $x = 2$ and	d x = 4, is divided into two equal				
	a) $2\sqrt{2}$	b) $\pm 2\sqrt{2}$	c) ±√2	d) ±2				
	7. The set of all real <i>x</i> satisfies	atisfying the inequality $\frac{3- x }{4- x }$	· 0					
	a) [−3,3] ∪ (−∞,−4) ∪ (4,∞)	b) $(-\infty, -4) \cup (4, \infty)$					
	c) $(-\infty, -3) \cup (4, \infty)$		d) $(-\infty, -3) \cup (3, \infty)$					
8.	The value of b for which the f a) $b < 1$ b)	unction $f(x) = \sin x - bx + c$ $b \ge 1$ c) $b > 1$ d)	is decreasing in the interval $b \leq 1$	$(-\infty,\infty)$ is given by				
9.	If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z$	$=\frac{3\pi}{2}$ and $f(1) = 2$,						
f (1	$(p+q) = f(p). f(q), \forall p, q \in Q$	<i>R</i> , then						
$x^{f($	$(1) + y^{f(2)} + z^{f(3)} - \frac{(x+y)}{x^{f(1)} + y^{f(2)}}$	$\frac{y+z}{f(2)+zf(3)}$ is equal to						
	a) 0	b) 1	c) 2	d) 3				
10. For the LPP Min $z = 2x + y$ subject to constraints $5x + 10y \le 50$, $x + y \ge 1$, $y \le 4$ and $x, y \ge 0$, then z is a) 0 b) 1 c) 2 d) 12 11. A line makes acute angles of α , β , and y with the coordinate axes such that								
$\cos \alpha \cos \beta = \cos \beta \cos \gamma = \frac{2}{\pi}$								
An	$d\cos v \cos \alpha = \frac{4}{2}$.							
Th	en $\cos \alpha + \cos \beta + \cos \gamma$ is ec	qual						
То		•						
	a) $\frac{25}{9}$	b) $\frac{5}{9}$	c) $\frac{5}{3}$	d) $\frac{2}{3}$				
12.	12. The value of $\frac{1}{81^n} = \frac{10}{81^n} \square^{2n} C_1 + \frac{10^2}{81^n} \square^{2n} C_2 - \frac{10^3}{81^n} \square^{2n} C_3 + \dots + \frac{10^{2n}}{81^n}$, is							
	a) 2	b) 0	c) 1/2	d) 1				

ww	w.neetjeenotes.com	<u>1</u>			CODE	E -03	JEE MA	AIN PRACTICE PAPER	2024-2025	
13. If $y = ae^x + be^{-x} + c$ where a, b, c are parameters then y' is equal to										
	a) <i>y</i> b)		y'c)	- r	,-	-)	0 d)	<i>y''</i>		
14.	If $A = \begin{bmatrix} 4 & 2 \\ 2 & 4 \end{bmatrix}$, $ adj A $	is equal t	to							
	a) 6	b)	16	c)	10	d)	None of these			
15	$\int \frac{\sin x}{\sin(x-\alpha)} dx$ is									
	a) $x \sin \alpha + \cos \alpha$	$\alpha \log si$	n(x + a)	α) + <i>c</i>			b) $x \sin \alpha + \cos \alpha$	$\log \sin(x - \alpha) + c$		
	c) $x \cos \alpha + \sin \alpha \log \cos(x + \alpha) + c$						d) $x \cos \alpha + \sin \alpha \log \sin(x - \alpha) + c$			
				1 1	1					
16.	If the line $\frac{x}{a} + \frac{y}{b} = 1$	moves su	uch that	$\frac{1}{a^2} + \frac{1}{b^2} =$	$=\frac{1}{c^2}$ whe	re c is	a constant, then the l	ocus of the foot of the perj	pendicular from	
	the origin to the line	e is	h) Cir	cle			c) Parabola	d) Ellinse		
	uj struight mie		b) th	ere				uj impse		
17.	The points (1, 3) an the value of <i>c</i> will be	d (5, 1) a e	re the oj	oposite v	vertices	of a re	ctangle. The other tw	o vertices lie on the line y	= 2x + c, then	
	a) 4		b) —4				c) 2	d) -2		
18	$n \vee a$ is true when									
10.	a) Both <i>p</i> and <i>q</i> a	are true	b) <i>p</i> is	s true ai	nd q is f	false	c) p is false and q	is true d) All of these		
	19. An anti-aircraft gun can take a maximum of four shots at any plane moving away from it. The probabilities of									
	at least one	shot hits	s the plai	ne?		511015	are 0.4, 0.5, 0.2 and 0.	i respectively. What is the	e probability that	
	a) 0.6976	6 b)	0.3024	ł c)	0.72	d)	0.6431			
20.	How many 10 digit	numbers	can be v	vritten b)	y using	the dig	gits 1 and 2?	d) 101		
	a) i: $C_1 + \dots + C_2$	2	0) 2				$C_j = C_2$	u) 10:		
					Integ	ger Ar	nswer Type			
21.	21. The value of $\begin{vmatrix} 2x_1y_1 & x_1y_2 + x_2y_1 & x_1y_3 + x_3y_1 \\ x_1y_2 + x_2y_1 & 2x_2y_2 & x_2y_3 + x_3y_2 \\ x_1y_3 + x_3y_1 & x_2y_3 + x_3y_2 & 2x_3y_3 \end{vmatrix}$ is									
22.	2. If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $ \vec{a} - \vec{b} ^2 + \vec{b} - \vec{c} ^2 + \vec{c} - \vec{a} ^2 = 9$, then $ 2\vec{a} + 5\vec{b} + 5\vec{c} $ is equal to									
23.	23. Let S denote sum of the series $\frac{3}{2} + \frac{4}{4} + \frac{5}{6} + \frac{6}{7} + \cdots \infty$. Then the value of S^{-1} is									
24.	If $f(x) = \sqrt{4 - x^2}$	$+\sqrt{x^2-1}$	<u>1,</u> then	the max	imum va	alue of	$f(f(x))^2$ is			
25.	25. The largest value of the non-negative integer <i>a</i> for which $\lim_{x \to 1} \left\{ \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right\}^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}$ is									
26.	In a triangle ABC, if	P, Q, R d	ivides Al	B, BC, C	A respec	ctively	in k : 1 (in order) & $\frac{a}{a}$	$\frac{r(\Delta PQR)}{r(\Delta ABC)} = \frac{1}{3}$ then k is		
27.	27. Find all positive values of 'a' for which the equation $\log (ax) = 2 \log (x + 1)$ has the unique root.									
28.	Find number of real	roots of th	ne equation	$\sin e^x + 3x$	x + 2 = 0).				
29.	Two rays with comm maximum possible le	non end p ength of C	ooint 'O' DB.	form a 3	0° angle	e. Point	t A lies on one ray. Po	oint B on the other ray and	AB = 1. Find the	

30. Let P(x) be a polynomial of degree 4, with

P(2) = -1, P'(2) = 0, P''(2) = 2, P'''(2) = -12 and $P^{iv}(2) = 24$. Calculate P''(1).