|--|

CODE -02

PHYSICS

	Single correct questions						
1.	In the figure shown the magnetic induction at the centre of the arc due to the current in portion AB will be						
	r /						
-	→						
Α	B O C D						
	a) $\frac{\mu_0 t}{r}$	b) $\frac{\mu_0 t}{2\pi}$	c) $\frac{\mu_0 l}{4\pi}$	d) Zero			
	r	21	41				
2	A waggel containing F litrag	f_{α} and $a \neq 0.0$ m processing is a	nnosted to an avaguated wasa	al of values 2 literas. The regultant			
۷.	A vessel containing 5 <i>titles</i> (ming whole gystem to be igolo	annected to an evacuated vess	er of volume 5 <i>utres</i> . The resultant			
	pressure inside will be (assu	hing whole system to be isola		1) 2 / 4			
	a) 4/3 m	bJ 0.5 <i>m</i>	c) 2.0 m	a) 3/4 m			
3.	If pressure at half the depth	of a lake is equal to 2/3 pressu	are at the bottom of the lake th	nen what is depth of the lake			
	a) 10 <i>m</i>	b) 20 <i>m</i>	c) 60 m	d) 30 m			
4.	Energy gap between valence	band and conduction band of	a semiconductor is				
	a) Zero	b) Infinite	c) 1 eV	d) 10 eV			
	uj 2010		0) 101				
-	A halloon is vising contically.	-1	A store is drawned from it on	d it was show the ground in 10			
5.	A balloon is rising vertically	up with a velocity of $29 ms^{-1}$.	A stone is dropped from it an -2^{2}	a it reaches the ground in 10			
	seconds. The height of the ba	lloon when the stone was dro	spped from it is $(g = 9.8 ms^2)$				
	a) 100 m	b) 200 m	c) 400 m	d) 150 m			
6.	A shell is fired from a cannor	h with velocity $v \text{ ms}^{-1}$ at an ar	ngle θ with the horizontal dire	ction. At the highest point in its			
	path it explodes into two pie	ces of equal mass. One of the p	pieces retraces its path to the o	cannon and the speed in m/s of the			
	piece immediately after the e	explosion is					
	$a) 2u \cos \theta$	b) $2u\cos\theta$	$a^{3\nu}\cos\theta$	d) $\sqrt{3}v\cos\theta$			
	a) 50 cos o	0) 20 003 0	$c_{j} = \frac{1}{2} c_{0} c_{0} c_{0}$	$a_j - \frac{1}{2}$			
7.	On a new scale of temperature	re (which is linear) and called	the W scale, the freezing and	boiling points of water are $39^{\circ} W$			
	and 239°W respectively. Wh	at will be the temperature on	the new scale, corresponding	to a temperature of 39°C on the			
	Celsius scale						
	a) 200° <i>W</i>	b) 139° <i>W</i>	c) 78° <i>W</i>	d) 117° <i>W</i>			
	-	-	-	-			
Q	A wooden cube (density	of wood d) of slide l flo	ats in a liquid of density of	with its upper and lower			
0.	A wooden cube (density of wood a) of slide i floats in a liquid of density ρ with its upper and lower						
	surfaces horizontal. If the cube is pushed slightly down and released, its performs simple harmonics						
	motion of period <i>T</i> , then <i>T</i> is equal						
	$l\rho$	$1 \sim 10^{1}$	$l\rho$	ld			
	a) $2\pi \sqrt{\frac{q}{(q-d)g}}$	b) $2\pi \sqrt{\frac{\pi}{\log}}$	c) $2\pi \sqrt{\frac{\gamma}{dg}}$	d) $2\pi \sqrt{\frac{d}{(q-d)g}}$			
		V F0	1.00	V CF WO			
				1			
9.	An electric heater rated 220	V and 550 W is connected to A	A.C. mains. The current drawn	by it is			
	a) 0.8 <i>A</i>	b) 2.5 <i>A</i>	c) 0.4 A	d) 1.25 <i>A</i>			
10.	Mean life of a radioactive sam	nple is 100 s. Then its half-life	(in minutes) is				
	a) 0.693	b) 1	c) 10 ⁻⁴	d) 1.155			
11	1 A capacitor with air as the dielectric is charged to a notential of 100 <i>volts.</i> If the space between the plates is now filled with						
11 .	a dialectric of dialectric constant 10 the potential difference between the plates will be						
	a) 1000 molto	b) 100 molta	c) 10 molta	d) Zoro			
	aj 1000 V0115	0J 100 <i>V0115</i>		uj 2010			
1	12. The energy of an electron in an excited hydrogen atom is -3.4 eV. Its angular momentum is						

www.neetjeenotes.com	CODE -	-02 JEE MAIN	PRACTICE PAPER 2024-2025			
a) 3.72 × 10^{-34} Jsb)	2.11 × 10 ⁻³⁴ Jsc)	1.57×10^{-34} Jsd)	1.11×10^{-34} Js			
13. A radar sends the wayes towards a distant object and receives the signal reflected by object. These wayes are						
a) Sound waves	b) Light waves	c) Radio waves	d) Micro waves			
14. Given that $2l\sqrt{\frac{m}{T}}$, where <i>l</i> is that of	Given that $2l\sqrt{\frac{m}{T}}$, where <i>l</i> is the length of a string of linear density <i>m</i> , under tension <i>T</i> has the same dimensional formula as					
a) Mass	b) Time	c) Length	d) Mole			
	2	ý C				
15. In a Young's double slit expe	eriment the intensity at a po	oint where the path difference	is $\frac{\lambda}{6}$ (λ being the wavelength of the			
light used) is <i>I</i> . If <i>I</i> ⁰ denotes	the maximum intensity, $\frac{I}{I_0}$	is equal to				
a) $\frac{1}{-}$	b) $\frac{\sqrt{3}}{\sqrt{3}}$	c) 1/2	d) 3/4			
$\sqrt{2}$	² 2	·) -/ -				
16. To break a wire of one metr	e length, minimum 40 kg и	<i>it</i> , is required. Then the wire o	of the same material of double radius			
and 6 <i>m</i> length will require	breaking weight	-				
a) 80 <i>kg-wt</i>	b) 240 <i>kg-wt</i>	c) 200 <i>kg-wt</i>	d) 160 <i>kg-wt</i>			
 17. Magnetic lines of force due to a bar magnet do not intersect because a) A point always has a single net magnetic field b) The lines have similar charges and so repel each other c) The lines always diverge from a single point d) The lines need magnetic lenses to be made to intersect 						
18. A tuning fork vibrates with 2	2 beats in 0.04 second. The	frequency of the fork is				
a) 50 <i>Hz</i>	b) 100 <i>Hz</i>	c) 80 <i>Hz</i>	d) None of these			
 19. At a given temperature the <i>r.m.s.</i> velocity of molecules of the gas is a) Same b) Proportional to molecular weight c) Inversely proportional to molecular weight d) Inversely proportional to square root of molecular weight 						
20. In the figure given the value of <i>X</i> resistance will be, when the p.d. between <i>B</i> and <i>D</i> is zero						
A A A A A A A A A A						
a) 4 ohm	b) 6 <i>ohm</i>	c) 8 <i>ohm</i>	d) 9 <i>ohm</i>			
Integer Answer Type 21 A ball is projected from the origin. The <i>x</i> -and <i>y</i> -coordinates of its displacement are given by $x = 2t$ and $y = 4t$. Et ² Find						

- **21.** A ball is projected from the origin. The *x*-and *y*-coordinates of its displacement are given by x = 3t and $y = 4t 5t^2$. Find the velocity of projection (in m/sec)
- **22.** A capacitor with stored energy 4.0 J is connected with an identical capacitor with no electric field in between. Find the total energy stored (in J) in the two capacitors

- **23.** A current of 2 A is increasing at a rate 4 A/s through a coil of inductance 1 H. Find the energy stored in the inductor per unit time in the units of J/s
- **24.** A man of mass M = 58 kg jumps from an aeroplane as shown in Fig. He sees the hard ground below him and a lake at a distance d = 1 m from the point directly below him. He immediately puts off his jacket (mass m = 2 kg) and throws it in a direction directly away from the lake. If he just fails to strike the ground, find the distance (in10¹m) he should walk now to pick his jacket. (Neglect air resistance and take the velocity of man at the time of jump with respect to earth zero)

- **25.** A freshly prepared sample of a radioisotope of half-life 1386s has activity 10^3 disintegrations per second. Given that In 2 = 0.693, the fraction of the initial number of nuclei (expressed in nearest integer percentage) that will decay in the first 80s after preparation of the sample is
- 26. A disc is rotating freely about its axis. Percentage change in angular velocity of disc if temperature decreases by 20 °C is (coefficient of linear expansion of material of disc is $5 \times 10^{-4/\circ}$ C)
- 27. A particle starting from rest undergoes acceleration given by $a = |t 2| m/s^2$ where t is time in sec. Velocity of particle after 4 sec is
- **28.** M grams of steam at 100°C is mixed with 200g of ice at its melting point in a thermally insulated container. If it produces liquid water at 40°C [heat of vaporization of water is 540 cal/g and heat of fusion of ice is 80 cal/g], the value of M is_____.
- **29.** A charged particle is accelerated through a potential difference of 12 kV and acquires a speed of 10^6 ms^{-1} . It is projected perpendicularly into the magnetic field of strength 0.2 T. The radius of circle described is.....× 10 cm.
- **30.** In figure, the cube is 40.0 cm on each edge. Four straight segments of wire ab, bc, cd and da form a closed loop that carries a current I = 5.00 A, in the direction shown. A uniform magnetic field of magnitude B = 0.020 T is in the positive y-direction. Determine the magnitude and direction of the magnetic force on each segment.

www.neetjeenotes.com **CODE -02** JEE MAIN PRACTICE PAPER 2024-2025 **CHEMISTRY Single Correct Answer Type 1.** A radioactive element is: a) Sulphur b) Polonium c) Tellurium d) Selenium 2. Nitration of salicylic acid will give: a) 2,4,6-trinitophenol b) 2,4,6-trinitrobenzoic acid c) 2,4,6-trinitrobenzene d) None of the above 3. Which of the following oxides doesn't react with both of an acid and alkali, is? a) ZnO c) $Al_2 O_3$ d) BeO b) SnO_2 4. Silver nitrate produces a black stain on skin due to: a) Its corrosive action b) Its reduction to metallic silver c) Its strong reducing action d) The formation of a complex compound 5. Sodium metal cannot be stored under: a) Benzene b) Kerosene c) Alcohol d) Toluene 6. Which of the following statements is correct? a) Aniline is stronger base than ammonia b) Methylamine is a stronger base than aniline and ammonia c) Aniline is stronger than ammonia, but weaker base than methylamine d) Methylamine is stronger than aniline, but weaker base than ammonia 7. A copolymer of vinyl chloride and vinyledene chloride is called: a) Dynel c) Vinylon d) Orlon b) Saran **8.** In a solution of 7.8 g benzene (C_6H_6) and 46.0 g toluene ($C_6H_5CH_3$), the mole-fraction of benzene is b) $\frac{1}{2}$ a) $\frac{1}{2}$ c) $\frac{1}{5}$ d) $\frac{1}{6}$ **9.** In the reaction, OCH₃ NaNH₂/ liq.ammonia_ ċι The major product A is OCH₃ OCH₃ OCH₃ H₃CO ·NH₂ NH_2 H_2N b) d) a) c)

www.neetjeenotes.com **CODE -02** JEE MAIN PRACTICE PAPER 2024-2025 **19.** Which of the following statements is not true? a) Some disinfectants can be used as antiseptic at low concentration b) Sulphadiazine is a synthetic antibacterial c) Ampicillin is natural antibiotic d) Aspirin is analgesic and antipyretic both **20.** 50% neutralization of a solution of formic acid ($K_a = 2 \times 10^{-4}$) with NaOH would result in a solution having a hydrogen ion concentration of: a) 2×10^{-4} b) 3.7 c) 2.7 d) 1.85 **Integer Answer Type** 21. Magnetic moment of a complex is 4.9 BM. Thus, unpaired electron(s) may be.... **22.** What is the total score for the correct statement(s) from the following Given: $MnO_4^{\ominus} + 8H^{\oplus} + 5e^- \rightarrow Mn^{2+} + 4H_2O; E^{\ominus} = 1.51 V$ $Fe^{3+} + e^- \rightarrow Fe^{2+}; E^{\ominus} = 0.77 V$ $Cl_2 + 2e^- \rightarrow 2Cl^{\ominus}; E^{\ominus} = 1.36 V$ Statement Score **a** MnO_4^{\ominus} is sufficiently strong oxidant in acidic solution (pH = 0) to oxidize Fe²⁺ ion 1 **b** Fe^{2+} ion cannot be titrated against standard KMnO₄ solution if the medium is made acidic (pH = 0) by adding HCl2 **c** MnO_4^{\ominus} ion cannot oxidize Ce^{3+} in acidic medium (pH = 0) 3 **d** Fe²⁺ cannot be titrated against standard KMnO₄ solution in acidic medium (pH = 0) in the presence of Ce³⁺ ion 4 **23.** In question (1) above, number of α –particles emitted is in question **24.** In the case of a first order reaction, the time required for 93.75% of reaction to take place is *x* times that required for half of the reaction. Find the value of *x* 25. The enthalpy changes of some processes are given below . $\propto -D - \text{glucose}_{(s)} + \text{H}_2 O \rightarrow \propto -D - \text{glucose}_{(aq.)}$; Heat of dissolution = 10.84 kJ $\beta - D - \text{glucose}_{(s)} + \text{H}_2\text{O} \rightarrow \beta - D - \text{glucose}_{(aa)}$; Heat of dissolution = 4.68 kJ $\propto -D - \text{glucose}_{(aq.)} + \text{H}_2 0 \rightarrow \beta - D - \text{glucose}_{(aq.)}$; Heat of mutarotation = 1.16 kJ The ΔH° for $\propto -D$ – glucose $\rightarrow \beta - D$ – glucose is 26. A sample of Pure KHC₂O₄.H₂C₂O₄.2H₂O (three replaceable hydrogen) requires 4.62 mol of NaOH for titration. How many milli moles of KMnO₄ will the same sample react with. 27. 1000 gm of 1 (m) sucrose solution in water is cooled to -3.554° C. What mass of ice would be separated out in nearest possible integers in gm at this temperature ? For water $k_f = 1.86 \text{ K mol}^{-1} \text{ kg}$ **28.** The enthalpy of vapourisation of water = $45.953 \frac{\text{kJ}}{\text{m}}$ At 1 atm pressure the boiling point of water is 373 K. What is the boiling point of water when pressure equal to $\frac{1}{2}$ atm in Kelvin in nearest possible integers ? Given : $\log 2 = 0.3$ **29.** The enthalpy of vapourisation of water = 45.953 kJ/mol. At 1 atm pressure the boiling point of water is 373 K. What is the boiling point of water when pressure equal to 1/2 atm in Kelvin in nearest possible integers? Given : $\log 2 = 0.3$

30. The molar volume of liquid benzene

(density = 0.8 gm/ml) increases by a factor of 2750 as it vapourises at 20°C and that of liquid benzene (density = 0.867 gm/ml) increases by a factor of 7720 at 20°C. A solution of benzene and toluene at 20°C has a vapour pressure of 46.0 torr. What is the mole percentage of benzene in the solution in nearest possible integers ?

MATHEMATICS

		Single Correc	rt Answer Type			
1.	 a) f(x) is continuous and differentiable for all x in its domain b) f(x) is continuous for all x in its domain but not differentiable at x = ±1 c) f(x) is neither continuous nor differentiable at x = ±1 d) None of the above 					
2.	The solution of the differ	The solution of the differential equation $\frac{dy}{dx} = \frac{x-2y+1}{2}$ is				
	a) $(x - 2y)^2 + 2x = c$	b) $(x - 2y)^2 + x = c$	c) $(x - 2y) + 2x^2 = c$	d) $(x - 2y) + x^2 = c$		
3.	5. If $\tan^{-1}\frac{x-1}{x+2} + \tan^{-1}\frac{x+1}{x+2} = \frac{\pi}{4}$, then x is equal to					
	a) $\frac{1}{\sqrt{2}}$	b) $-\frac{1}{\sqrt{2}}$	c) $\pm \sqrt{\frac{5}{2}}$	d) $\pm \frac{1}{2}$		
4.	Consider the inequalities x_1 + a) (2, 2)	$x_2 \le 3, 2x_1 + 5x_2 \ge 10; x_1, x_2$ b) (1, 2)	$f_2 \ge 0$. Which of the point lies c) (2, 1)	in the feasible region? d) (4, 2)		
5. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the square of their recipro then $\frac{a}{c}, \frac{b}{a}$ and $\frac{c}{b}$ are in				the square of their reciprocals,		
	a) Arithmetic progressiorc) Harmonic progression	1	b) Geometric progressiond) Arithmetico-geometric	n c progression		
6.	If the primitive of $\sin^{-3/2} x \sin^{-3/2} x$	$n^{-1/2}(x+\theta)$ is $-2 \operatorname{cosec} \theta \sqrt{f(x+\theta)}$	\overline{x}) + c, then			
	a) $f(x) = \frac{\sin x}{\sin(x+\theta)}$	b) $f(x) = \tan(x + \theta)$	c) $f(x) = \frac{\sin(x+\theta)}{\sin x}$	$f(x) = \frac{\tan(x+\theta)}{\sin x}$		
	7. The number of comma) 1	non tangents to two circles x ² b) 2	$x^{2} + y^{2} = 4$ and $x^{2} + y^{2} - 8x$ c) 5	+ 12 = 0 is d) 3		
8.	In order to remove first degree a) (-2, 1)	ee terms from the equation 2x b) (1, 2)	$x^{2} + 7y^{2} + 8x - 14y + 4 = 0,$ c) (2, 1)	the origin is shifted at the point d) $(1, -2)$		
9.	The point $P(a, b)$ lies on the s equation of the line PQ is	straight line $3x + 2y = 13$ and	d the point $\mathcal{Q}(b, a)$ lies on the	straight line $4x - y = 5$, then		
	a) $x - 5 = 5$	b) $x + y = 5$	c) $x + y = -5$	d) $x - y = -5$		
10. $\sum_{k=0}^{10} \square \square^{20} C_k$ is equal to						
	a) $2^{19} + \frac{1}{2} = 2^{0} C_{10}$	b) 2 ¹⁹	c) ²⁰ C ₁₀	d) None of these		
11.	If $\square^8 C_r - \square^7 C_3 = \square^7 C_2$, then	n r is equal to				
	a) 3	b) 4	c) 8	d) 6		
12.	A point on <i>XOZ</i> - plane divides	s the join of $(5, -3, -2)$ and (2)	1,2, –2) at			
	a) $\left(\frac{13}{5}, 0, -2\right)$					
	b) $\left(\frac{13}{5}, 0, 2\right)$					
	c) (5.0.2)					

c) (5,0,2) d) (5,0,-2)

www.neetjeenotes.com	CODE -02	JEE MAIN PRA	ACTICE PAPER 2024-2025				
13. If $f(x) = \frac{1}{x+1} - \log(1+x)$, $x = \frac{1}{x+1}$ a) an increasing function c) both increasing and dec	> 0, then <i>f</i> is creasing function	b) a decreasing function d) None of the above					
14. If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, then $\frac{\pi}{2}$	4. If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$, then $\frac{dy}{d}$ is equal to						
a) $\frac{x}{y}$	b) $-\frac{x}{y}$	c) $\frac{y}{x}$	d) $-\frac{y}{x}$				
15. The area of the figure bounded	d by the parabolas $x = -2y^2$	and $x = 1 - 3y^2$ is					
a) 8/3	b) 6/3	c) 4/3	d) 2/3				
16. Which of the following propose a) $(\sim p \lor \sim q) \lor (p \lor \sim q)$	sitions is a contradiction? b) $(p \rightarrow q) \lor (p \land \sim q)$	c) $(\sim p \land q) \land (\sim q)$	d) (~ $p \land q$) V (~ q)				
17. In a $\triangle ABC$, if $C = 60^\circ$, then $\frac{a}{100000000000000000000000000000000000$	17. In a $\triangle ABC$, if $C = 60^\circ$, then $\frac{a}{a} + \frac{b}{b} =$						
a) 2	b) 1	c) 4	d) None of these				
18. If $x^2 + 2ax + 10 - 3a > 0$ for	all $x \in R$, then						
a) -5 < a < 2	b) $a < -5$	c) <i>a</i> > 5	d) 2 < <i>a</i> < 5				
 19. If A and B are two matrices su a) A and B are of same or c c) Both A and B are of sam 	ch that both $A+B$ and AB are ler ne order $n \times n$	defined, then b) A is of order $m \times m$ and d) A is of order $m \times n$ and	d <i>B</i> is of order $n \times n$ <i>B</i> is of order $n \times m$				
20. If A and B are two mutually example: a) $P(A) < P(\overline{B})$	cclusive events, then b) $P(A) > P(\overline{B})$	c) $P(A) < P(B)$	d) None of these				

Integer Answer Type

21. Three distinct points $P(3u^2, 2u^3)$; $Q(3v^2, 2v^2)$ and $R(3w^2, 2w^2)$ are collinear then uv + vw + wu is equal to

22. Let $f : R \to R$ be a continuous odd function, which vanishes exactly at one point and $f(1) = \frac{1}{2}$. Suppose that $F(x) = \int_{-1}^{x} f(t) dt$ for all $x \in [-1, 2]$ and $G(x) = \int_{-1}^{x} t |f\{f(t)\}| dt$ for all $x \in [-1, 2]$. If $\lim_{x \to 1} \frac{F(x)}{G(x)} = \frac{1}{14}$, then the value of $f\left(\frac{1}{2}\right)$ is

- **23.** The coefficient of the quadratic equation $ax^2 + (a + d)x + (a + 2d) = 0$ are consecutive terms of a positively valued, increasing arithmetic sequence. Then the least integral value of $\frac{d}{a}$ such that the equation has real solutions is
- **24.** If $f(x) = \sqrt{4 x^2} + \sqrt{x^2 1}$, then the maximum value of $(f(x))^2$ is
- **25.** If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the between \vec{b} and \vec{c} is $\frac{\pi}{3}$, then find the value of $|\vec{a} \times \vec{b} \vec{a} \times \vec{c}|$ **26.** The number of integral values of *m*, for which the x - co-ordinate of the point of intersection of the lines
- 3x + 4y = 9 and y = mx + 1 is also an integer is

27. If y = 1/x, then the value of $\frac{dy}{\sqrt{1+y^4}} + \frac{dx}{\sqrt{1+x^4}} + 1$ is equal to-

28. The minimum value of $\frac{12}{\pi} \left(\csc^{-1} \left[3x^2 + \frac{5}{4} \right] + \sec^{-1} \left[3x^2 + \frac{1}{4} \right] \right)$ is equal to (where [·] denotes the greatest integer function)

29. If equation $\cot^4 x - 2\csc^2 x + a^2 = 0$ has at least one solution then, sum of all possible integral values of a is

30. The numerical value of coefficient of x^5 in the expansion of $(2 - x + 3x^2)^6$ is.....