- **1.** Expansion during heating
 - (a) Occurs only in solids
 - (b) Increases the weight of a material
 - (c) Decreases the density of a material
 - (d) Occurs at the same rate for all liquids and solids
- 2. When a rod is heated but prevented from expanding, the stress developed is independent of
 - (a) Material of the rod (b) Rise in temperature
 - (c) Length of rod (d) None of above
- 3. Ratio among linear expansion coefficient (α), areal expansion coefficient (β) and volume expansion coefficient (γ) is
 (a) 1:2:3
 (b) 3:2:1
 (c) 4:3:2
 (d) None of these
- 4. The volume of a metal sphere increases by 0.24% when its temperature is raised by $40^{\circ}C$. The coefficient of linear expansion of the metal is °C

(a) 2×10^{-5} (b) 6×10^{-5} (c) 2.1×10^{-5} (d) 1.2×10^{-5}

5. Water has maximum density at

(a)	$0^{\circ}C$	(b)	32° <i>F</i>
(c)	$-4^{\circ}C$	(d)	$4^{\circ}C$

- 6. A bar of iron is 10 cm at 20°C. At 19°C it will be (α of iron = 11 × 10⁻⁶/°C)
 (a) 11 × 10⁻⁶ cm longer (b) 11 × 10⁻⁶ cm shorter
 - (a) 11×10^{5} cm longer (b) 11×10^{5} cm shorter
 - (c) $11 \times 10^{-5} cm$ shorter (d) $11 \times 10^{-5} cm$ longer
- 7. A vertical column 50 cm long at 50°C balances another column of same liquid 60 cm long at 100°C. The coefficient of absolute expansion of the liquid is
 - (a) $0.005/^{\circ}C$ (b) $0.0005/^{\circ}C$ (c) $0.002/^{\circ}C$ (d) $0.0002/^{\circ}C$
- 8. An iron bar of length 10 *m* is heated from 0°*C* to 100°*C*. If the coefficient of linear thermal expansion of iron is $10 \times 10^{-6} / ^{\circ}C$, the increase in the length of bar is
 - (a) 0.5 *cm* (b) 1.0 *cm*
 - (c) 1.5 *cm* (d) 2.0 *cm*
- 9. A cylindrical metal rod of length L_0 is shaped into a ring with a small gap as shown. On heating the system

(a) x decreases, r and d increase

- (b) x and r increase, d decreases
- (c) *x*, *r* and *d* all increase
- (d) Data insufficient to arrive at a conclusion

10. Surface of the lake is at $2^{\circ}C$. Find the temperature of the bottom of the lake

(a)	$2^{\circ}C$	(b)	$3^{\circ}C$
(c)	$4^{\circ}C$	(d)	$1^{\circ}C$

11. When a copper ball is heated, the largest percentage increase will occur in its

- (a) Diameter (b) Area
- (c) Volume (d) Density

12. The apparent coefficient of expansion of a liquid when heated in a copper vessel is *C* and when heated in a silver vessel is *S*. If *A* is the linear coefficient of expansion of copper, then the linear coefficient of expansion of silver is

(a) $\frac{C+S-3A}{3}$	(b) $\frac{C+3A-S}{3}$
(c) $\frac{S+3A-C}{3}$	(d) $\frac{C+S+3A}{3}$

- 13. On heating a liquid of coefficient of cubical expansion γ in a container having coefficient of linear expansion $\gamma/3$, the level of liquid in the container will
 - (a) Rise
 - (b) Fall
 - (c) Will remain almost stationary
 - (d) It is difficult to say
- 14. A metal rod of silver at $0^{\circ}C$ is heated to $100^{\circ}C$. It's length is increased by 0.19 *cm*. Coefficient of cubical expansion of the silver rod is

(a) 5	$5.7 imes 10^{-5/\circ} C$	(b) 0.	.63 ×	$10^{-5}/^{\circ}C$
(c) 1	$1.9 \times 10^{-5/\circ}C$	(d) 16	6.1 ×	$10^{-5}/^{\circ}C$

15. The length of a metallic rod is 5m at $0^{\circ}C$ and becomes 5.01 m, on heating upto $100^{\circ}C$. The linear expansion of the metal will be

(a) $2.33 \times 10^{-5} / ^{\circ}C$ (b) $6.0 \times 10^{-5} / ^{\circ}C$ (c) $4.0 \times 10^{-5} / ^{\circ}C$ (d) $2.0 \times 10^{-5} / ^{\circ}C$

16. A pendulum clock keeps correct time at $0^{\circ}C$. Its mean coefficient of linear expansions is $\alpha / {}^{\circ}C$, then the loss in seconds per day by the clock if the temperature rises by $t^{\circ}C$ is

(a)
$$\frac{\frac{1}{2} \alpha t \times 864000}{1 - \frac{\alpha t}{2}}$$
 (b) $\frac{1}{2} \alpha t \times 86400$
(c) $\frac{\frac{1}{2} \alpha t \times 86400}{\left(1 - \frac{\alpha t}{2}\right)^2}$ (d) $\frac{\frac{1}{2} \alpha t \times 86400}{1 + \frac{\alpha t}{2}}$

17. In cold countries, water pipes sometimes burst, because

- (a) Pipe contracts
- (b) Water expands on freezing
- (c) When water freezes, pressure increases
- (d) When water freezes, it takes heat from pipes
- 18. When a bimetallic strip is heated, it
 - (a) Does not bend at all
 - (b) Gets twisted in the form of an helix
 - (c) Bend in the form of an arc with the more expandable metal outside
 - (d) Bends in the form of an arc with the more expandable metal inside
- **19.** A uniform metal rod is used as a bar pendulum. If the room temperature rises by $10^{\circ}C$, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per $^{\circ}C$, the period of the pendulum will have percentage increase of
 - (a) -2×10^{-3} (b) -1×10^{-3} (c) 2×10^{-3} (d) 1×10^{-3}
- **20.** If on heating liquid through $80^{\circ}C$, the mass expelled is $(1/100)^{\text{th}}$ of mass still remaining, the coefficient of apparent expansion of liquid is
 - (a) $1.25 \times 10^{-4/\circ}C$ (b) $12.5 \times 10^{-4/\circ}C$ (c) $1.25 \times 10^{-5/\circ}C$ (b) None of these
- 21. A brass disc fits simply in a hole of a steel plate. The disc from the hole can be loosened if the system
 - (a) First heated then cooled (b)First cooled then heated
 - (c) Is heated (d) Is cooled
- **22.** The real coefficient of volume expansion of glycerine is $0.000597 \text{ per}^{\circ}C$ and linear coefficient of expansion of glass is $0.000009 \text{ per}^{\circ}C$. Then the apparent volume coefficient of expansion of glycerine is
 - (a) $0.000558 \text{ per}^{\circ}C$ (b) $0.00057 \text{ per}^{\circ}C$
 - (c) $0.00027 \text{ per}^{\circ}C$ (d) $0.00066 \text{ per}^{\circ}C$
- **23.** Coefficient of real expansion of mercury is $0.18 \times 10^{-3/\circ}C$. If the density of mercury at $0^{\circ}C$ is 13.6 *gm/cc*. its density at 473*K* is
 - (a) 13.11 *gm/cc* (b) 26.22 *gm/cc*
 - (c) 52.11 gm/cc (d) None of these
- 24. A beaker is completely filled with water at $4^{\circ}C$. It will overflow if
 - (a) Heated above $4^{\circ}C$
 - (b) Cooled below $4^{\circ}C$
 - (c) Both heated and cooled above and below $4^{\circ}C$ respectively
 - (d) None of the above
- 25. The volume of a gas at $20^{\circ}C$ is 100 cm^3 at normal pressure. If it is heated to $100^{\circ}C$, its volume becomes 125 cm^3 at the same pressure, then volume coefficient of the gas at normal pressure is
 - (a) $0.0015/^{\circ}C$ (b) $0.0045/^{\circ}C$
 - (c) $0.0025/^{\circ}C$ (d) $0.0033/^{\circ}C$

www.neetjeenotes.com

NEET/JEE MAIN PRACTICE PAPER 2024-2025

26. The coefficient of superficial expansion of a solid is 2×10^{-5} /°C. It's coefficient of linear expansion is

- (a) $4 \times 10^{-5/\circ}C$ (b) $3 \times 10^{-5/\circ}C$ (c) $2 \times 10^{-5/\circ}C$ (d) $1 \times 10^{-5/\circ}C$
- 27. Two rods, one of aluminum and the other made of steel, having initial length l_1 and l_2 are connected together to form a single rod of length $l_1 + l_2$. The coefficients of linear expansion for aluminum and steel are α_a and α_s respectively. If the length of each rod increases by the same amount when their temperature are raised by $t^{\circ}C$, then find the ratio $\frac{l_1}{(l_1 + l_2)}$.

(a) $\frac{\alpha_s}{\alpha_a}$ (b) $\frac{\alpha_a}{\alpha_s}$

(c)
$$\frac{\alpha_s}{(\alpha_a + \alpha_s)}$$
 (d) $\frac{\alpha_a}{(\alpha_a + \alpha_s)}$

- **28.** At some temperature *T*, a bronze pin is a little large to fit into a hole drilled in a steel block. The change in temperature required for an exact fit is minimum when
 - (a) Only the block is heated
 - (b) Both block and pin are heated together
 - (c) Both block and pin are cooled together
 - (d) Only the pin is cooled
- **29.** Density of substance at $0^{\circ}C$ is 10 gm/cc and at $100^{\circ}C$, its density is 9.7 gm/cc. The coefficient of linear expansion of the substance will be
 - (a) 10^2 (b) 10^{-2}
 - (c) 10^{-3} (d) 10^{-4}
- 30. 5 litre of benzene weighs
 - (a) More in summer than in winter
 - (b) More in winter than in summer
 - (c) Equal in winter and summer
 - (d) None of the above
- 31. A litre of alcohol weighs
 - (a) Less in winter than in summer
 - (b) Less in summer than in winter
 - (c) Some both in summer and winter
 - (d) None of the above
- **32.** If a cylinder of diameter 1.0 *cm* at 30°*C* is to be solid into a hole of diameter 0.9997 *cm* in a steel plate at the same temperature, then minimum required rise in the temperature of the plate is : (Coefficient of linear expansion of steel $= 12 \times 10^{-6} / ^{\circ}C$)
 - (a) $25^{\circ}C$ (b) $35^{\circ}C$
 - (c) $45^{\circ}C$ (d) $55^{\circ}C$
- **33.** A solid ball of metal has a concentric spherical cavity within it. If the ball is heated, the volume of the cavity will
 - (a) Increase (b) Decrease
 - (c) Remain unaffected (d) None of these

- **34.** If the length of a cylinder on heating increases by 2%, the area of its base will increase by
 - (a) 0.5% (b) 2%
 - (c) 1% (d) 4%

- 1. (c) Solids, liquids and gases all expand on being heated as result density (= mass/volume) decreases.
- 2. (c) Stress = $Y \alpha \Delta \theta$; hence it is independent of length.

3. (a) As
$$\alpha = \frac{\beta}{2} = \frac{\gamma}{3} \implies \alpha : \beta : \gamma = 1 : 2 : 3$$

4. (a)
$$\gamma = \frac{\Delta V}{V.\Delta T} = \frac{0.24}{100 \times 40} = 6 \times 10^{-5} / {^\circ}C$$

 $\Rightarrow \alpha = \frac{\gamma}{3} = 2 \times 10^{-5} / {^\circ}C$

- 5. (d) Water has maximum density at $4^{\circ}C$.
- 6. (c) $L = L_0(1 + \alpha \Delta \theta) \Longrightarrow \frac{L_1}{L_2} = \frac{1 + \alpha (\Delta \theta)_1}{1 + \alpha (\Delta \theta)_2}$ $\Longrightarrow \frac{10}{L_2} = \frac{1 + 11 \times 10^{-6} \times 20}{1 + 11 \times 10^{-6} \times 19} \Longrightarrow L_2 = 9.99989$ \Longrightarrow Length is shorten by $10 - 9.99989 = 0.00011 = 11 \times 10^{-5} cm$

7. (a)
$$\frac{h_1}{h_2} = \frac{\rho_1}{\rho_2} = \frac{(1+\gamma\,\theta_1)}{(1+\gamma\,\theta_2)} \qquad \left[\because \rho = \frac{\rho_0}{(1+\gamma\theta)}\right]$$
$$\implies \frac{50}{60} = \frac{1+\gamma\times50}{1+\gamma\times100} \implies \gamma = 0.005 \ /^{\circ}C$$

- 8. (b) Increase in length $\Delta L = L_0 \alpha \Delta \theta$ = 10 × 10 × 10⁻⁶ × (100 – 0) = 10⁻² m = 1 cm
- **9.** (c) On heating the system; *x*, *r*, *d* all increases, since the expansion of isotropic solids is similar to true photographic enlargement.
- 10. (c) The densest layer of water will be at bottom. The density of water is maximum at $4^{\circ}C$. So the temperature of bottom of lake will be $4^{\circ}C$.
- 11. (c) When a copper ball is heated, it's size increases. As Volume ∞ (radius)³ and Area ∞ ((radius)², so percentage increase will be largest in it's volume. Density will decrease with rise in temperature.
- 12. (b) $\gamma_r = \gamma_a + \gamma_v$; where $\gamma_r = \text{coefficient of real expansion}$, $\gamma_a = \text{coefficient of apparent expansion and } \gamma_v = \text{coefficient}$ of expansion of vessel. For copper $\gamma_r = C + 3\alpha_{Cu} = C + 3A$

For silver $\gamma_r = S + 3 \alpha_{Ag}$ $\Rightarrow C + 3A = S + 3 \alpha_{Ag} \Rightarrow \alpha_{Ag} = \frac{C - S + 3A}{3}$

13. (c) As coefficient of cubical expansion of liquid equals coefficient of cubical expansion of vessel, the level of liquid will not change on heating.

NEET/JEE MAIN PRACTICE PAPER 2024-2025

14. (a)
$$\alpha = \frac{\Delta L}{L_0(\Delta \theta)} = \frac{0.19}{100 (100 - 0)} = 1.9 \times 10^{-5} / {}^{\circ}C$$

Now $\gamma = 3\alpha = 3 \times 1.9 \times 10^{-5} / {}^{\circ}C = 5.7 \times 10^{-5} / {}^{\circ}C$

15. (d)
$$\alpha = \frac{\Delta L}{L_0 \times \Delta \theta} = \frac{0.01}{5 \times 100} = 2 \times 10^{-5} / {^\circ C}$$

16. (b) Loss in time per second $\frac{\Delta T}{T} = \frac{1}{2} \alpha \Delta \theta =$

 \Rightarrow loss in time per day

$$\Delta t = \left(\frac{1}{2}\,\alpha t\right)t = \frac{1}{2}\,\alpha t \times (24 \times 60 \times 60) = \frac{1}{2}\,\alpha t \times 86400$$

- 17. (b) In anomalous expansion, water contracts on heating and expands on cooling in the range $0^{\circ}C$ to $4^{\circ}C$. Therefore water pipes sometimes burst, in cold countries.
- 18. (c) A bimetallic strip on being heated bends in the form of an arc with more expandable metal (A) outside (as shown) correct.

19. (d) Fractional change in period $\frac{\Delta T}{T} = \frac{1}{2} \alpha \Delta \theta = \frac{1}{2} \times 2 \times 10^{-6} \times 10 = 10^{-5}$ % change = $\frac{\Delta T}{T} \times 100 = 10^{-5} \times 100 = 10^{-3}$ %

20. (a)
$$\gamma_{app.} = \frac{\text{Massexpelled}}{\text{Massremained} \times \Delta T}$$

= $\frac{x/100}{x \times 80} = \frac{1}{8000} = 1.25 \times 10^{-4} / {^{\circ}C}$

- **21.** (d) Since, the coefficient of linear expansion of brass is greater than that of steel. On cooling, the brass contracts more, so, it get loosened.
- **22.** (b) As we know $\gamma_{real} = \gamma_{app.} + \gamma_{vessel}$

$$\Rightarrow \gamma_{app.} = \gamma_{glycerine} - \gamma_{glass}$$
$$= 0.000597 - 0.000027 = 0.00057 / ^{\circ}C$$

- **23.** (a) $\rho = \rho_0 (1 \gamma . \Delta \theta) = 13.6[1 0.18 \times 10^{-3} (473 273)]$ = 13.6[1 - 0.036] = 13.11 gm/cc.
- **24.** (c) Water has maximum density at $4^{\circ}C$, so if the water is heated above $4^{\circ}C$ or cooled below $4^{\circ}C$ density decreases *i.e.* volume increases. In other words, it $0^{\circ}C$ $4^{\circ}C$ Tem expands so it overflows in both the cases.

NEET/JEE MAIN PRACTICE PAPER 2024-2025

25. (d)
$$\frac{V_1}{V_2} = \frac{1 + \gamma t_1}{1 + \gamma t_2} \implies \frac{100}{125} = \frac{1 + \gamma \times 20}{1 + \gamma \times 100} \implies \gamma = 0.0033 / ^{\circ}C$$

26. (d)
$$\alpha = \frac{\beta}{2} = \frac{2 \times 10^{-5}}{2} = 10^{-5} / {}^{\circ}C$$

27. (c) Given
$$\Delta l_1 = \Delta l_2$$
 or $l_1 \alpha_a t = l_2 \alpha_s t$
 $\therefore \frac{l_1}{l_2} = \frac{\alpha_s}{\alpha_a}$ or $\frac{l_1}{l_1 + l_2} = \frac{\alpha_s}{\alpha_a + \alpha_s}$.

- **28.** (a) Since coefficient of expansion of steel is greater than that of bronze. Hence with small increase in it's temperature the hole expand sufficiently.
- **29.** (d) Coefficient of volume expansion

$$\gamma = \frac{\Delta \rho}{\rho \cdot \Delta T} = \frac{(\rho_1 - \rho_2)}{\rho \cdot (\Delta \theta)} = \frac{(10 - 9.7)}{10 \times (100 - 0)} = 3 \times 10^{-4}$$

Hence, coefficient of linear expansion

$$\alpha = \frac{\gamma}{3} = 10^{-4} / ^{\circ}C$$

- **30.** (b) Similar to previous question, benzene contracts in winter. So 5 litre of benzene will weigh more in winter than in summer.
- **31.** (b) In summer alcohol expands, density decreases, so 1 litre of alcohol will weigh less in summer than in winter.

32. (a)
$$\alpha = \frac{\Delta L}{L_0 \Delta \theta} = \frac{(1 - 0.9997)}{0.9997 \times 12 \times 10^{-6}} = 25 \,^{\circ}C$$

33. (a) When the ball is heated, expansion of ball and cavity both occurs, hence volume of cavity increases.

34. (d)
$$A \propto L^2 \implies \frac{\Delta A}{A} = 2 \cdot \frac{\Delta L}{L} \implies \frac{\Delta A}{A} = 2 \times 2 = 4\%$$
.