- **1.** The momentum of a photon is $3.3 \times 10^{-29} kg m/sec$. Its frequency will be
 - (a) $3 \times 10^{3} Hz$ (b) $6 \times 10^{3} Hz$ (c) $7.5 \times 10^{12} Hz$ (d) $1.5 \times 10^{13} Hz$
 - (c) 7.3×10 Hz (d) 1.3×10 Hz
- **2.** The energy of a photon of wavelength λ is given by
 - (a) $h\lambda$ (b) $ch\lambda$ (c) λ/hc (d) hc/λ
- **3.** The momentum of a photon is 2×10^{-16} *gm-cm/sec*. Its energy is

(a) $0.61 \times 10^{-26} erg$ (b) $2.0 \times 10^{-26} erg$

- (c) $6 \times 10^{-6} erg$ (d) $6 \times 10^{-8} erg$
- 4. The rest mass of the photon is
 - (a) 0
 - (b) ∞
 - (c) Between 0 and ∞
 - (d) Equal to that of an electron

5. The momentum of the photon of wavelength 5000\AA will be

- (a) $1.3 \times 10^{-27} kg \cdot m/sec$ (b) $1.3 \times 10^{-28} kg \cdot m/sec$
- (c) $4 \times 10^{29} kg \cdot m/sec$ (d) $4 \times 10^{-18} kg \cdot m/sec$
- 6. The momentum of a photon of energy hv will be

(a)	hν	(b)	hv/c
(c)	hvc	(d)	h/v

- 7. A photon in motion has a mass
 - (a) c/hv (b) h/v
 - (c) hv (d) hv/c^2
- 8. If the momentum of a photon is *p*, then its frequency is

(a)	$\frac{ph}{c}$	(b)	$\frac{pc}{h}$
(c)	$\frac{mh}{c}$	(d)	$\frac{mc}{h}$

Where m is the rest mass of the photon

- 9. An AIR station is broadcasting the waves of wavelength 300 metres. If the radiating power of the transmitter is 10 kW, then the number of photons radiated per second is
 - (a) 1.5×10^{29} (b) 1.5×10^{31} (c) 1.5×10^{33} (d) 1.5×10^{35}
- 10. The energy of a photon is E = hv and the momentum of photon $p = \frac{h}{\lambda}$, then the velocity of photon will be
 - (a) *E/p* (b) *Ep*

NEET/JEE MAIN PRACTICE PAPER 2024-2025

- (c) $\left(\frac{E}{p}\right)^2$ (d) $3 \times 10^8 m/s$
- 11. The approximate wavelength of a photon of energy $2.48 \ eV$ is
 - (a) 500 Å (b) 5000 Å
 - (c) 2000 Å (d) 1000 Å

12. An important spectral emission line has a wavelength of 21 cm. The corresponding photon energy is

(a) $5.9 \times 10^{-4} eV$ (b) $5.9 \times 10^{-6} eV$ (c) $5.9 \times 10^{-8} eV$ (d) $11.8 \times 10^{-6} eV$ (h = $6.62 \times 10^{-34} Js$; $c = 3 \times 10^8 m/s$)

13. The momentum of a photon in an *X*-ray beam of 10^{-10} metre wavelength is

(a) $1.5 \times 10^{-23} kg - m/sec$ (b) $6.6 \times 10^{-24} kg - m/sec$ (c) $6.6 \times 10^{-44} kg - m/sec$ (d) $2.2 \times 10^{-52} kg - m/sec$

- 14. The energy of a photon of light with wavelength 5000 Å is approximately 2.5 *eV*. This way the energy of an *X*-ray photon with wavelength 1Å would be
 - (a) $2.5/5000 \ eV$ (b) $2.5/(5000)^2 \ eV$
 - (c) $2.5 \times 5000 \ eV$ (d) $2.5 \times (5000)^2 eV$

15. Energy of a quanta of frequency 10^{15} Hz and $h = 6.6 \times 10^{-34}$ J - sec will be

(a) $6.6 \times 10^{-19} J$ (b) $6.6 \times 10^{-12} J$ (c) $6.6 \times 10^{-49} J$ (d) $6.6 \times 10^{-41} J$

16. Momentum of a photon of wavelength λ is

(a)	$\frac{h}{\lambda}$	(b) Zero
(c)	$\frac{h\lambda}{c^2}$	(d) $\frac{h\lambda}{c}$

17. Wavelength of a 1 keV photon is $1.24 \times 10^{-9} m$. What is the frequency of 1 MeV photon

- (a) $1.24 \times 10^{15} Hz$ (b) $2.4 \times 10^{20} Hz$ (c) $1.24 \times 10^{18} Hz$ (d) $2.4 \times 10^{23} Hz$
- **18.** What is the momentum of a photon having frequency $1.5 \times 10^{13} Hz$

(a)	$3.3 \times 10^{-29} kg m/s$	(b)	$3.3 \times 10^{-34} kg m/s$

- (c) $6.6 \times 10^{-34} kg m/s$ (d) $6.6 \times 10^{-30} kg m/s$
- **19.** The energy of a photon of light of wavelength 450 nm is
 - (a) $4.4 \times 10^{-19} J$ (b) $2.5 \times 10^{-19} J$ (c) $1.25 \times 10^{-17} J$ (d) $2.5 \times 10^{-17} J$

20. Frequency of photon having energy 66 eV is

(a)	$8 \times 10^{-15} Hz$	(b) $12 \times 10^{-15} Hz$
(c)	$16 \times 10^{15} Hz$	(d) None of these

- **21.** Which of the following statement is not correct
 - (a) Photographic plates are sensitive to infrared rays
 - (b) Photographic plates are sensitive to ultraviolet rays
 - (c) Infra-red rays are invisible but can cast shadows like visible light
 - (d) Infrared photons have more energy than photons of visible light
- **22.** If we express the energy of a photon in KeV and the wavelength in angstroms, then energy of a photon can be calculated from the relation
 - (a) E = 12.4 hv (b) $E = 12.4 h/\lambda$
 - (c) $E = 12.4 / \lambda$ (d) E = hv
- **23.** The frequency of a photon, having energy 100 eV is $(h = 6.6 \, 10^{-34} \, J\text{-sec})$
 - (a) $2.42 \times 10^{26} Hz$ (b) $2.42 \times 10^{16} Hz$
 - (c) $2.42 \times 10^{12} Hz$ (d) $2.42 \times 10^{9} Hz$
- 24. A photon of wavelength 4400 Å is passing through vacuum. The effective mass and momentum of the photon are respectively

(a)
$$5 \times 10^{-36} kg$$
, $1.5 \times 10^{-27} kg$ - m/s

- (b) $5 \times 10^{-35} kg$, $1.5 \times 10^{-26} kg$ m / s
- (c) Zero, $1.5 \times 10^{-26} kg m / s$
- (d) $5 \times 10^{-36} kg$, 1.67 $\times 10^{-43} kg$ m/s

25. Which of the following is true for photon

(a)
$$E = \frac{hc}{\lambda}$$
 (b) $E = \frac{1}{2}mu^2$
(c) $p = \frac{E}{2v}$ (d) $E = \frac{1}{2}mc^2$

26. Which of the following is incorrect statement regarding photon

- (a) Photon exerts no pressure
- (b) Photon energy is hv
- (c) Photon rest mass is zero
- (d) None of these

27. If a photon has velocity c and frequency v, then which of following represents its wavelength

(a)
$$\frac{hc}{E}$$
 (b) $\frac{hv}{c}$
(c) $\frac{hv}{c^2}$ (d) hv

- **28.** The mass of a photo electron is
 - (a) $9.1 \times 10^{-27} kg$ (b) $9.1 \times 10^{-29} kg$
 - (c) $9.1 \times 10^{-31} kg$ (d) $9.1 \times 10^{-34} kg$
- **29.** Energy of photon whose frequency is 10^{12} *MHz*, will be (a) $4.14 \times 10^{3} keV$ (b) $4.14 \times 10^{2} eV$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

(c) $4.14 \times 10^{3} MeV$ (d) $4.14 \times 10^{3} eV$

30. There are n_1 photons of frequency γ_1 in a beam of light. In an equally energetic beam, there are n_2 photons of frequency γ_2 . Then the correct relation is

(a)
$$\frac{n_1}{n_2} = 1$$

(b) $\frac{n_1}{n_2} = \frac{\gamma_1}{\gamma_2}$
(c) $\frac{n_1}{n_2} = \frac{\gamma_2}{\gamma_1}$
(d) $\frac{n_1}{n_2} = \frac{\gamma_1^2}{\gamma_2^2}$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

1. (d)
$$p = \frac{hv}{c} \Rightarrow v = \frac{pc}{h} = \frac{3.3 \times 10^{-39} \times 3 \times 10^8}{6.6 \times 10^{-34}} = 1.5 \times 10^{13} Hz$$

2. (d)
3. (c) $p = \frac{E}{c} \Rightarrow E = p \times c = 2 \times 10^{-16} \times (3 \times 10^{10}) = 6 \times 10^{-6} erg.$
4. (a)
5. (a) $p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{(5000 \times 10^{-10})} = 1.3 \times 10^{-27} kg \cdot m / s$
6. (b) $p = \frac{E}{c} = \frac{hv}{c}$
7. (d) $E = hv = mc^2 \Rightarrow m = \frac{hv}{c^2}$
8. (b) $p = \frac{E}{c} = \frac{hv}{c} \Rightarrow v = \frac{pc}{h}$
9. (b) $P = \frac{W}{t} = \frac{nhc}{\lambda t} \Rightarrow \left(\frac{n}{t}\right) = \frac{P\lambda}{hc} = \frac{10 \times 10^3 \times 300}{6.6 \times 10^{-34} \times 3 \times 10^8}$
 $= 1.5 \times 10^{31}$
10. (a) Momentum of photon $p = \frac{E}{c}$
 $\Rightarrow \text{ Velocity of photon } c = \frac{E}{p}$
11. (b) By using $E(eV) = \frac{12375}{\lambda(\lambda)}$
 $\Rightarrow \lambda = \frac{12375}{2.48} = 4989 \cdot 9 \Lambda \approx 5000 \Lambda$
12. (b) $E = \frac{hc}{\lambda} = \frac{3 \times 10^8 \times 6.62 \times 10^{-34}}{0.21 \times 1.6 \times 10^{-19}} = 5.9 \times 10^{-6} eV$
13. (b) Momentum of photon
 $p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{10^{-10}} = 6.6 \times 10^{-24} kg \cdot m/sec.$
14. (c) $E \propto \frac{1}{\lambda} \Rightarrow \frac{2.5}{E} = \frac{1}{5000} \Rightarrow E = (2.5) \times 5000 eV$
15. (a) $E = hv = 6.6 \times 10^{-34} \times 10^{15} = 6.6 \times 10^{-19} J$

16. (a) Since $hv = mc^2$, hence $p = mc = \frac{hv}{c} = \frac{h}{\lambda}$

BY SWADHIN SIR

NEET/JEE MAIN PRACTICE PAPER 2024-2025

17. (b)
$$E = hv \Rightarrow v = \frac{E}{h} = \frac{1 \times 10^{6} \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}} = 2.4 \times 10^{30} Hz$$

18. (a) $p = \frac{hv}{c} = \frac{6.6 \times 10^{-34} \times 1.5 \times 10^{13}}{3 \times 10^{8}} = 3.3 \times 10^{-29} kg \cdot m / \sec$
19. (a) $E = \frac{hc}{\lambda} = \frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{450 \times 10^{-9}} = 4.4 \times 10^{-19} J$
20. (c) $E = hv \Rightarrow v = \frac{E}{h} = \frac{66 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}} = 16 \times 10^{15} Hz$
21. (d) $E \propto \frac{1}{\lambda}$; also $\lambda_{infrared} > \lambda_{visible}$ so $E_{infrared} < E_{visible}$
22. (c) Energy of photon $E = \frac{hc}{\lambda}$ (Joules) $= \frac{hc}{e\lambda} (eV)$
 $\Rightarrow \frac{E_{(eV)}}{E_{(eV)}} = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times \lambda (\lambda)} = \frac{12375}{\lambda (\lambda)}$
 $\Rightarrow E(keV) = \frac{12.37}{\lambda (\lambda)} \approx \frac{12.4}{\lambda}$
23. (b) $E = hv \Rightarrow 100 \times 1.6 \times 10^{-19} = 6.6 \times 10^{-34} \times v$
 $\Rightarrow v = 2.42 \times 10^{16} Hz$.
24. (a) $p = \frac{h}{\lambda} = \frac{6.6 \times 10^{-34}}{4400 \times 10^{-10}} = 1.5 \times 10^{-27} kg \cdot m / s$
and mass $m = \frac{p}{c} = \frac{1.5 \times 10^{-27}}{3 \times 10^{8}} = 5 \times 10^{-36} kg$
25. (a)
26. (a)
27. (a) $E = \frac{hc}{\lambda} \Rightarrow \lambda = \frac{hc}{E}$
28. (c)
29. (d) $E(eV) = \frac{hv}{e} = \frac{6.0 \times 10^{-34} \times 10^{12} \times 10^{6}}{1.6 \times 10^{-19}} = 4.14 \times 10^{3} eV$.
30. (c) $E = nhv \Rightarrow v \propto \frac{1}{n} \Rightarrow \frac{n_{1}}{n_{2}} = \frac{\gamma_{2}}{\gamma_{1}}$.

BY SWADHIN SIR