NEET/JEE MAIN PRACTICE PAPER 2024-2025

- 1. The idea of matter waves was given by
 - (a) Davisson and Germer (b) de-Broglie
 - (c) Einstein (d) Planck
- 2. Wave is associated with matter
 - (a) When it is stationary
 - (b) When it is in motion with the velocity of light only
 - (c) When it is in motion with any velocity
 - (d) None of the above

3. The de-Broglie wavelength associated with the particle of mass m moving with velocity v is

- (a) h/mv
 (b) mv /h
 (c) mh/v
 (d) m/hv
- $(c) m n v \qquad (d) m n v$

4. A photon, an electron and a uranium nucleus all have the same wavelength. The one with the most energy

- (a) Is the photon
- (b) Is the electron
- (c) Is the uranium nucleus
- (d) Depends upon the wavelength and the properties of the particle.
- 5. A particle which has zero rest mass and non-zero energy and momentum must travel with a speed
 - (a) Equal to c, the speed of light in vacuum
 - (b) Greater than c
 - (c) Less than c
 - (d) Tending to infinity
- 6. When the kinetic energy of an electron is increased, the wavelength of the associated wave will
 - (a) Increase
 - (b) Decrease
 - (c) Wavelength does not depend on the kinetic energy
 - (d) None of the above

7. If the de-Broglie wavelengths for a proton and for a α – particle are equal, then the ratio of their velocities will be

(a) 4:1	(b) 2:1
(c) 1:2	(d) 1:4

8. The de-Broglie wavelength λ associated with an electron having kinetic energy *E* is given by the expression

(a)
$$\frac{h}{\sqrt{2mE}}$$
 (b) $\frac{2h}{mE}$
(c) $2mhE$ (d) $\frac{2\sqrt{2mE}}{h}$

- 9. Dual nature of radiation is shown by
 - (a) Diffraction and reflection
 - (b) Refraction and diffraction
 - (c) Photoelectric effect alone

NEET/JEE MAIN PRACTICE PAPER 2024-2025

- (d) Photoelectric effect and diffraction
- 10. For the Bohr's first orbit of circumference $2\pi r$, the de-Broglie wavelength of revolving electron will be
 - (a) $2\pi r$ (b) πr
 - (c) $\frac{1}{2\pi r}$ (d) $\frac{1}{4\pi r}$
- **11.** An electron of mass *m* when accelerated through a potential difference *V* has de-Broglie wavelength λ . The de-Broglie wavelength associated with a proton of mass *M* accelerated through the same potential difference will be

(a)	$\lambda \frac{m}{M}$	(b)	$\lambda \sqrt{\frac{m}{M}}$

- (c) $\lambda \frac{M}{m}$ (d) $\lambda \sqrt{\frac{M}{m}}$
- 12. What will be the ratio of de-Broglie wavelengths of proton and α particle of same energy

(a) 2:1	(b) 1:2
(c) 4 : 1	(d) 1:4

13. What is the de-Broglie wavelength of the α -particle accelerated through a potential difference V

(a)
$$\frac{0.287}{\sqrt{V}} \text{ Å}$$
 (b) $\frac{12.27}{\sqrt{V}} \text{ Å}$
(c) $\frac{0.101}{\sqrt{V}} \text{ Å}$ (d) $\frac{0.202}{\sqrt{V}} \text{ Å}$

14. de-Broglie hypothesis treated electrons as

(a) Particles (b) Waves

- (c) Both 'a' and 'b' (d) None of these
- **15.** The energy that should be added to an electron, to reduce its de-Broglie wavelengths from $10^{-10} m$ to $0.5 \times 10^{-10} m$, will be
 - (a) Four times the initial energy
 - (b) Thrice the initial energy
 - (c) Equal to the initial energy
 - (d) Twice the initial energy

16. The de-Broglie wavelength of an electron having 80 eV of energy is nearly

 $(1eV = 1.6 \times 10^{-19} J, \text{ Mass of electron} = 9 \times 10^{-31} kg$

Plank's constant = 6.6×10^{-34} *J-sec*)

- (a) 140 Å (b) 0.14 Å
- (c) 14 Å (d) 1.4 Å

17. If particles are moving with same velocity, then maximum de-Broglie wavelength will be for

- (a) Neutron (b) Proton
- (c) β -particle (d) α -particle

- **18.** If an electron and a photon propagate in the form of waves having the same wavelength, it implies that they have the same
 - (a) Energy (b) Momentum
 - (c) Velocity (d) Angular momentum

19. The de-Broglie wavelength is proportional to

(a)	$\lambda \propto \frac{1}{v}$	(b)	$\lambda \propto \frac{1}{m}$
(c)	$\lambda \propto \frac{1}{p}$	(d)	$\lambda \propto p$

20. Particle nature and wave nature of electromagnetic waves and electrons can be shown by

- (a) Electron has small mass, deflected by the metal sheet
- (b) X-ray is diffracted, reflected by thick metal sheet
- (c) Light is refracted and defracted
- (d) Photoelectricity and electron microscopy
- **21.** The de-Broglie wavelength of a particle moving with a velocity $2.25 \times 10^8 \text{ m/s}$ is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is (velocity of light is $3 \times 10^8 \text{ m/s}$)
 - (a) 1/8 (b) 3/8
 - (c) 5/8 (d) 7/8
- 22. According to de-Broglie, the de-Broglie wavelength for electron in an orbit of hydrogen atom is 10^{-9} *m*. The principle quantum number for this electron is
 - (a) 1 (b) 2
 - (c) 3 (d) 4

23. The speed of an electron having a wavelength of $10^{-10}m$ is

(a) $7.25 \times 10^6 m/s$	(b) $6.26 \times 10^6 m/s$
(c) $5.25 \times 10^6 m/s$	(d) $4.24 \times 10^6 m/s$

24. The kinetic energy of electron and proton is $10^{-32} J$. Then the relation between their de-Broglie wavelengths is (a) $\lambda_p < \lambda_e$ (b) $\lambda_p > \lambda_e$

(c) $\lambda_p = \lambda_e$ (d) $\lambda_p = 2\lambda_e$
--

- **25.** The de-Broglie wavelength of a particle accelerated with 150 *volt* potential is 10^{-10} *m*. If it is accelerated by 600 *volts* p.d., its wavelength will be
 - (a) 0.25 Å (b) 0.5 Å(c) 1.5 Å (d) 2 Å

26. The de-Broglie wavelength associated with a hydrogen molecule moving with a thermal velocity of 3 km/s will be

(a) 1 Å	(b) 0.66 Å
(c) 6.6 Å	(d) 66 Å

NEET/JEE MAIN PRACTICE PAPER 2024-2025

- 27. When the momentum of a proton is changed by an amount P_0 , the corresponding change in the de-Broglie wavelength is found to be 0.25%. Then, the original momentum of the proton was
 - (a) p_0 (b) $100 p_0$
 - (c) $400 p_0$ (d) $4 p_0$
- **28.** The de-Broglie wavelength of a neutron at $27^{\circ}C$ is λ . What will be its wavelength at $927^{\circ}C$
 - (a) $\lambda/2$ (b) $\lambda/3$
 - (c) $\lambda/4$ (d) $\lambda/9$
- **29.** An electron and proton have the same de-Broglie wavelength. Then the kinetic energy of the electron is (a) Zero
 - (b) Infinity
 - (c) Equal to the kinetic energy of the proton
 - (d) Greater than the kinetic energy of the proton
- 30. For moving ball of cricket, the correct statement about de-Broglie wavelength is
 - (a) It is not applicable for such big particle

(b)
$$\frac{h}{\sqrt{2mE}}$$

(c)
$$\sqrt{\frac{n}{2mE}}$$

(d)
$$\frac{h}{2mE}$$

1. (b)

2. (c) According to de-Broglie hypothesis.

3. (a)
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

4. (a) $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$: $\therefore E = \frac{h^2}{2m\lambda^2}$

 λ is same for all, so $E \propto \frac{1}{m}$. Hence energy will be maximum for particle with lesser mass.

5. (a) Particle is photon and it travels with the velocity equal to light in vacuum.

6. (b)
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}}; \quad \therefore \lambda \propto \frac{1}{\sqrt{E}} \quad (h \text{ and } m = \text{constant})$$

7. (a)
$$\lambda = \frac{h}{m_1 v_1} = \frac{h}{m_2 v_2}; \therefore \frac{v_1}{v_2} = \frac{m_2}{m_1} = \frac{4}{1}$$

8. (a)
$$\frac{1}{2}mv^2 = E \Rightarrow mv = \sqrt{2mE}; \therefore \lambda = \frac{h}{mv} = \frac{h}{\sqrt{2mE}}$$

9. (d) $\begin{cases} Photoelect ric effect \rightarrow Particle nature \\ Diffraction \rightarrow Wave nature \end{cases}$ Dual nature

10. (a)
$$mvr = \frac{nh}{2\pi}$$
 According to Bohr's theory
 $\Rightarrow 2\pi r = n \left(\frac{h}{mv}\right) = n\lambda$ for $n = 1$, $\lambda = 2\pi r$

11. (b)
$$\lambda = \frac{h}{\sqrt{2mE}} \implies \lambda \propto \frac{1}{\sqrt{m}}$$
 (*E* = same)

12. (a)
$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{\lambda_p}{\lambda_{\alpha}} = \sqrt{\frac{m_{\alpha}}{m_p}} = \frac{2}{1}$$

13. (c)
$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2m_{\alpha}Q_{\alpha}V}}$$

On putting $Q_{\alpha} = 2 \times 1.6 \times 10^{-19} C$
 $m_{\alpha} = 4m_{p} = 4 \times 1.67 \times 10^{-27} kg \Longrightarrow \lambda = \frac{0.101}{\sqrt{V}} Å$

14. (b)

15. (b)
$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{\sqrt{E}} \Rightarrow \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{E_2}{E_1}}$$

 $\Rightarrow \frac{10^{-10}}{0.5 \times 10^{-10}} = \sqrt{\frac{E_2}{E_1}} \Rightarrow E_2 = 4E_1$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

Hence added energy $= E_2 - E_1 = 3E_1$

16. (d)
$$\lambda = \frac{h}{\sqrt{2mE}} = \frac{6.6 \times 10^{-34}}{\sqrt{2 \times 9 \times 10^{-31} \times 80 \times 1.6 \times 10^{-19}}} = 1.4 \text{ Å}$$

17. (c) $\lambda = \frac{h}{mv} \Rightarrow \lambda \propto \frac{1}{m}$

18. (b) If an electron and a photon propagates in the from of waves having the same wavelength, it implies that they have same momentum. This is according to de-Broglie equation, $p \propto \frac{1}{\lambda}$

19. (c)
$$\lambda = \frac{h}{p} \Rightarrow \lambda \propto \frac{1}{p}$$

20. (d) In photoelectric effect particle nature of electron is shown. While in electron microscope, beam of electron is considered as electron wave.

21. (b)
$$K_{\text{particle}} = \frac{1}{2}mv^2 \text{ also } \lambda = \frac{h}{mv}$$

 $\Rightarrow K_{\text{particle}} = \frac{1}{2}\left(\frac{h}{\lambda v}\right) \cdot v^2 = \frac{vh}{2\lambda} \qquad \dots(i)$
 $K_{\text{photon}} = \frac{hc}{\lambda} \qquad \dots(i)$
 $\therefore \frac{K_{\text{particle}}}{K_{\text{photon}}} = \frac{v}{2c} = \frac{2.25 \times 10^8}{2 \times 3 \times 10^8} = \frac{3}{8}$

22. (c)
$$2\pi r n = \lambda \Rightarrow n = \frac{\lambda}{2\pi r} = \frac{10^{-9}}{2 \times 3.14 \times 5.13 \times 10^{-11}} = 3$$

23. (a) By using $\lambda_{electron} = \frac{h}{m_e v} \implies v = \frac{h}{m_e \lambda_e} = \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{-10}} = 7.25 \times 10^6 \, m/s.$

24. (a) By using $\lambda = \frac{h}{\sqrt{2mE}}$ $E = 10^{-32} J = \text{Constant for both particles. Hence } \lambda \propto \frac{1}{\sqrt{m}}$ Since $m_p > m_e$ so $\lambda_p < \lambda_e$.

25. (b) By using
$$\lambda \propto \frac{1}{\sqrt{V}} \implies \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{V_2}{V_1}} \implies \frac{10^{-10}}{\lambda_2} = \sqrt{\frac{600}{150}} = 2 \implies \lambda_2 = 0.5 \text{ Å}.$$

26. (b)
$$\lambda = \frac{h}{mv_{ms}} \Longrightarrow \lambda = \frac{6.6 \times 10^{-34}}{2 \times 1.67 \times 10^{-27} \times 3 \times 10^{-3}} = 0.66 \text{ Å}$$

27. (c)
$$\lambda \propto \frac{1}{p} \Rightarrow \frac{\Delta p}{p} = -\frac{\Delta \lambda}{\lambda} \Rightarrow \left|\frac{\Delta p}{p}\right| = \left|\frac{\Delta \lambda}{\lambda}\right|$$

 $\Rightarrow \frac{p_0}{p} = \frac{0.25}{100} = \frac{1}{400} \Rightarrow p = 400 \ p_0.$

28. (a)
$$\lambda_{neutron} \propto \frac{1}{\sqrt{T}} \implies \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_2}{T_1}}$$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

$$\Longrightarrow \frac{\lambda}{\lambda_2} = \sqrt{\frac{(273 + 927)}{(273 + 27)}} = \sqrt{\frac{1200}{300}} = 2 \quad \Longrightarrow \lambda_2 = \frac{\lambda}{2}.$$

29. (d)
$$\lambda = \frac{h}{\sqrt{2mE}} \Rightarrow E \propto \frac{1}{\sqrt{m}}$$
 ($\lambda = \text{constant}$)
 $\therefore m_e < m_p \text{ so } E_e > E_p$

30. (b)