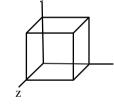

#### www.neetjeenotes.com

#### NEET/JEE MAIN PRACTICE PAPER 2024-2025


- A vessel is filled with a gas at a pressure of 76 cm of mercury at a certain temperature. The mass of the gas is increased by 50 % by introducing more gas in the vessel at the same temperature. The resultant pressure, in cm of Hg, is 
   (a) 76
   (b) 152
   (c) 114
   (d) 1117
- 2. Pressure versus density graph of an ideal gas is shown in figure -



- (a) During the process AB work done by the gas is positive
- (b) During the process AB work done by the gas is negative
- (c) During the process BC internal energy of the gas is increasing
- (d) None of these
- 3. The ratio of specific heats of an ideal gas is -

(a) 
$$\frac{1}{1 - \frac{R}{C_P}}$$
 (b)  $1 + \frac{R}{C_V}$  (c)  $\frac{1}{1 - \frac{C_V}{R}}$  (d)  $\frac{C_V}{C_P} + R$ 

4. In the figure shown, n molecules of a gas of mass nm move only along x-axis (i.e. either towards +ve x-axis or -ve x-axis) inside a cube of edge 1m. Half molecules have speed v and other half have 2v. The pressure on a wall ⊥ to x-axis is -



(a) 2.5 n m v<sup>2</sup> (b) 
$$\frac{n m v^2}{5}$$
 (c)  $\frac{3}{2}$  n m v<sup>2</sup> (d) None

- 5. A graph is plotted with  $\frac{PV}{T}$  on y-axis and mass of the gas along x-axis for different gases. The graph is -
  - (a) A straight line parallel to x-axis for all the gases
  - (b) A straight line passing through origin with a slope having a constant value for all the gases
  - (c) A straight line passing through origin with a slope having different values for different gases
  - (d) A straight line parallel to y-axis for all the gases
- 6. A gas is enclosed in a vessel at a constant temperature at a pressure of 2.5 atmospheres and a volume of 4 litres. Due to a leak in the vessel, after some time the pressure is reduced to 2 atmospheres. As a result -
  - (a) 20% of the gas remains in the vessel
  - (b) 20% of the gas escapes out
  - (c) 25% of the gas escapes out
  - (d) 25% of the gas remains in the vessel.
- 7. For Boyle's law to hold, the gas should be -
  - (a) Perfect and of constant mass and temperature
  - (b) Real and of constant mass and temperature
  - (c) Perfect and at constant temperature but variable mass

(d) Real and at constant temperature but variable mass

- 8. The equation of state corresponding to 8 g of  $O_2$  is -
  - (a) PV = 8RT(b)  $PV = \frac{RT}{4}$ (c) PV = RT(d)  $PV = \frac{RT}{2}$
- 9. Consider 1 cc sample of air at absolute temperature  $T_0$  at sea level and another 1 cc sample of air at a height where pressure is one-third atmosphere. The absolute temperature T of the sample at the height is -
  - (a) Equal to  $(T_0/3)$

(b) Equal to  $(3/T_0)$ 

- (c) Equal to T<sub>0</sub>
- (d) Cannot be determined in terms of  $T_0$  from the above data
- 10. A balloon contains 500 m<sup>3</sup> of helium at 27°C and 1 atmosphere pressure. The volume of the helium at -3°C temperature and 0.5 atmosphere pressure will be-(a) 500 m<sup>3</sup> (b) 700 m<sup>3</sup> (c) 900 m<sup>3</sup> (d) 1000 m<sup>3</sup>
- **11.** The r.m.s. speed of a group of 7 gas molecules having speeds (6, 4, 2, 0, -2, -4, -6) m/s is-(a) 1.5 m/s (b) 3.4 m/s (c) 9 m/s (d) 4 m/s
- 12. The ratio of translational KE per molecule of He and H<sub>2</sub> at same temperature is (a) 1:1
  (b) 1:2
  (c) 1:4
  (d) 2:1
- 13. Two identical container contain equal amount of same ideal gas at temp  $T_0$ , and pressure  $P_0$ . Now the two container is connected through a tube having negligible volume and one container is heated to  $2T_0$  while other is kept at  $T_0$ . The final common pressure is

(a)  $\frac{2P_0}{3}$  (b)  $\frac{4P_0}{3}$  (c)  $\frac{P_0}{3}$  (d)  $2 P_0$ 

- 14. If masses of all molecules of a gas are halved and their speed doubled, then the ratio of initial and final pressure is (a) 2:1 (b) 1:2 (c) 4:1 (d) 1:4
- 15. The velocities of the three molecules are 3v, 4v and 5v. The rms velocity is -

(a) 4v (b)  $\frac{25}{3}$ v (c)  $\frac{50}{3}$ v (d)  $\sqrt{\frac{50}{3}}$ v

- 16. A sample of an ideal gas occupies volume V at a pressure P and absolute temperature. The mass of each molecule is m. Which of the following expressions gives the density of the gas ?
  (a) P/Kt
  (b) Pm/kT
  (c) m/kT
  (d) P/kTV
- 17. The plot of isotherms will not be a straight line when a plot is drawn between : (a) PV and V (b) U and  $\rho$  (density)

 $(c)\frac{1}{P}vs\frac{1}{V} \qquad (d)\frac{1}{U} \text{ and } \rho$ 

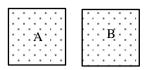
18. The molecules of a given mass of a gas have arms velocity of 200 m/sec at 27°C and  $1.0 \times 10^5 N/m^2$  pressure. When the temperature is 127°C and pressure is  $0.5 \times 10^5 N/m^2$ , the rms velocity in m/sec will be

(a)  $\frac{100\sqrt{2}}{3}$  (b)  $100\sqrt{2}$ 

- (c)  $\frac{400}{\sqrt{3}}$  (d) None of these
- Read the given statements and decide which is/are correct on the basis of kinetic theory of gases
   (I) Energy of one molecule at absolute temperature is zero
  - (II) rms speeds of different gases are same at same temperature
  - (III) For one gram of all ideal gas kinetic energy is same at same temperature
  - (IV) For one mole of all ideal gases mean kinetic energy is same at same temperature
  - (a) All are correct (b) I and IV are correct
  - (c) IV is correct (d) None of these
- 20. An air bubble of volume  $V_0$  is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before touching the surface will be (density of water is  $\rho$ )

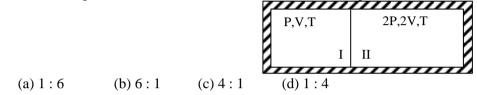
(a) 
$$V_0$$
 (b)  $V_0(\rho gh/P)$   
(c)  $\frac{V_0}{\left(1 + \frac{\rho gh}{P}\right)}$  (d)  $V_0\left(1 + \frac{\rho gh}{P}\right)$ 

- 21. A perfect gas at 27°C is heated at constant pressure to 327°C. If original volume of gas at 27°C is V then volume at 327°C is (a) V
  (b) 3V
  (c) 2V
  (d) V/2
- 22. One mole of a gas filled in a container at N.T.P., the number of molecules in 1 cm<sup>3</sup> of volume will be (a) 6.02 × 10<sup>23</sup> / 22400 (b) 6.02 × 10<sup>23</sup>
   (c) 1/22400 (d) 6.02 × 10<sup>23</sup> / 76


23. Energy of all molecules of a monoatomic gas having a volume V and pressure P is  $\frac{3}{2}PV$ . The total translational kinetic energy of all molecules of a diatomic gas as the same volume and pressure is

(a) 
$$\frac{1}{2} PV$$
 (b)  $\frac{3}{2} PV$  (c)  $\frac{5}{2} PV$  (d)  $3 PV$ 

- **24.** The specific heat of a gas
  - (a) Has only two values of  $C_p$  and  $C_v$
  - (b) Has a unique value at a given temperature
  - (c) Can have any value between 0 and  $\infty$
  - (d) Depends upon the mass of the gas
- 25. A gas, is heated at constant pressure. The fraction of heat supplied used for external work is


| (a) $\frac{1}{\gamma}$ | $(b)\left(1-\frac{1}{\gamma}\right)$ | (c) <i>γ</i> – 1 | $(\mathbf{d})\left(1-\frac{1}{\gamma^2}\right)$ |
|------------------------|--------------------------------------|------------------|-------------------------------------------------|
|------------------------|--------------------------------------|------------------|-------------------------------------------------|

- 26. A gas mixture consists of 2 mole of oxygen and 4 mole of argon at temperature T. Neglecting all vibrational modes, the total internal energy of the system is
  (a) 4 RT
  (b) 15 RT
  (c) 9 RT
  (d) 11 RT
- 27. Two containers A & B contain ideal gases helium and oxygen respectively. Volume of both containers are equal and pressure is also equal. Container A has twice the number of molecules than container B then if  $v_A \& v_B$  represent the rms speed of gases in containers A & B respectively, then -



(a) 
$$\frac{v_A}{v_B} = \sqrt{2}$$
  
(b)  $\frac{v_A}{v_B} = 4$   
(c)  $\frac{v_A}{v_B} = 2$   
(d)  $\frac{v_A}{v_B} = \sqrt{8}$ 

- 28. Jar A filled with gas characterized by parameter P,V and T and another jar B filled with a gas with parameter 2P, V/4 and 2T. The ratio of the number of molecules in jar A to those in jar B is(a) 1:1
  (b) 1:2
  (c) 2:1
  (d) 4:1
- **29.** A partition divides a container having insulated walls into two compartments I and II. The same gas fills the two compartments (shown in figure). The ratio of the number of molecules in compartments I and II is –



**30.** 2 mole of an ideal monoatomic gas mix with 1 mole of a ideal diatomic gas. The  $\frac{C_P}{C_V}$  for the mixture is -

| $(a)\frac{15}{11}$ | (b) $\frac{17}{11}$ | (c) $\frac{13}{11}$ | (d) None |
|--------------------|---------------------|---------------------|----------|
| 11                 | 11                  | 11                  |          |

www.neetjeenotes.com

#### NEET/JEE MAIN PRACTICE PAPER 2024-2025

# 1. (c)

P ∝ m Since m is increased by a factor of  $\frac{3}{2}$ , therefore, P will increase by a factor of  $\frac{3}{2}$ . ∴ New pressure =  $\frac{3}{2} \times 76$  cm of Hg = 114 cm of Hg.

## 2. (d)

As density increases, work done is – ve.

#### **3.** (b)

$$\therefore C_{P} - C_{V} = R, \frac{C_{P}}{C_{V}} - 1 = \frac{R}{C_{V}}$$
$$\therefore \frac{C_{P}}{C_{V}} = \gamma = 1 + \frac{R}{C_{V}}$$

#### 4. (a)

Pressure = (momentum transferred to wall in one second)/Area of wall

# 5. (c)

 $\frac{PV}{T} = \frac{M}{RM_{w}} \text{ So } y = \frac{x}{RM_{w}} \text{ i.e. } y \propto x$ Straight line having slope m =  $\frac{1}{RM_{w}}$ i.e. diff. for diff. gas.

# 6. (b)

$$PV = nRT = \frac{m'}{M} RT$$

Conceptual

# 8. (b)

8g of oxygen is equivalent to  $\left(\frac{1}{4}\right)$  mole

$$\therefore$$
 PV =  $\mu$ RT =  $\frac{RT}{4}$ 

#### 9. (d)

As mass of the gas at sea level and at height is not same, so data is insufficient

## 10. (c)

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \Longrightarrow \frac{1 \times 500}{300} = \frac{0.5 \times V_2}{270} \Longrightarrow V_2 = 900 \text{m}^3$$

## 11. (d)

$$v_{rms} = \sqrt{\frac{(6)^2 + (4)^2 + (2)^2 + (0)^2 + (-2)^2 + (-4)^2 + (-6)^2}{7}}$$
  
= 4 m/s

12. (a)

$$\frac{\text{KE}_{\text{H}_{2}}}{\text{KE}_{\text{He}}} = \frac{\frac{3}{2}\text{KT}}{\frac{3}{2}\text{KT}} = \frac{1}{1}$$

13. (b)

$$\frac{P_0 V}{RT_0} + \frac{P_0 V}{RT_0} = \frac{PV}{RT_0} + \frac{PV}{R2T_0}$$
$$2 P_0 = P + \frac{P}{2} \text{ or } 2 P_0 = \frac{3P}{2} \text{ or } P = \frac{4P_0}{3}$$

$$\mathbf{P} = \frac{\mathbf{m'} \cdot \mathbf{v}_{\mathrm{rms}}^2}{3\mathbf{V}} \,\mathbf{m}$$

15. (d)

$$v_{rms} = \frac{\sqrt{9V^2 + 16V^2 + 25V^2}}{3} = \sqrt{\frac{50}{3}}v$$

$$P = \frac{1}{3}\rho v_{rms}^2 \text{ and}$$
$$\frac{1}{2}mv_{rms}^2 = \frac{3}{2}KT \text{ and } C^2 = \frac{3KT}{m} \rho = \frac{3P}{C^2} = \frac{3Pm}{3KT} = \frac{Pm}{KT}$$

17. (c)

Isotherm  $\Rightarrow$  Temperature constant  $\Rightarrow$  U = constant

## 18. (c)

Change in pressure will not affect the *rms* velocity of molecules. So we will calculate only the effect of temperature. As  $v_{rms} \propto \sqrt{T}$ 

$$\therefore \frac{v_{300^{\circ}}}{v_{400^{\circ}}} = \sqrt{\frac{300}{400}} = \sqrt{\frac{3}{4}}$$

$$\Rightarrow \frac{200}{v_{400}} = \sqrt{\frac{3}{4}} \Rightarrow v_{400} = \frac{200 \times 2}{\sqrt{3}} = \frac{400}{\sqrt{3}} m/s .$$

## **19.** (c)

If the gas is not ideal then its molecule will possess potential energy. Hence statement (I) is wrong.

*rms* speed of different gases at same temperature depends on its molecular weight  $\left(v_{rms} \propto \frac{1}{\sqrt{M}}\right)$ . Hence statement (II)

also wrong.

Kinetic energy of one gram gas depends on the molecular weight  $\left(E_{gm} \propto \frac{1}{M}\right)$ . Hence statement (III) also wrong.

#### NEET/JEE MAIN PRACTICE PAPER 2024-2025

But K.E. of one mole of ideal gas does not depends on the molecular weight  $\left(E = \frac{3}{2}RT\right)$ . Hence (IV) is correct.

#### 20. (d)

According to Boyle's law multiplication of pressure and volume will remains constant at the bottom and top. If *P* is the atmospheric pressure at the top of the lake and the volume of bubble is *V* then from  $P_1V_1 = P_2V_2$ 

$$(P + h\rho g)V_0 = PV \implies V = \left(\frac{P + h\rho g}{P}\right)V_0$$
  

$$\therefore \quad V = V_0 \left[1 + \frac{\rho gh}{P}\right]$$

$$\bigwedge_{h = \rho} \frac{P_2 V_2}{\left[1 + \frac{\rho gh}{P}\right]}$$

#### 21. (c)

From Charle's law  $V \propto T$   $\therefore \frac{V_2}{V_1} = \frac{T_2}{T_1} = \frac{327 + 273}{27 + 273} = \frac{600}{300} = 2 \implies V_2 = 2V.$ 

## 22. (a)

Number of molecule in 22.4 *litre* gas at N.T.P. =  $6.023 \times 10^{23}$ or number of molecule in 22.4 × 10<sup>3</sup> cm<sup>3</sup> =  $6.023 \times 10^{23}$  [As 22.4 *litre* =  $22.4 \times 10^{3}$  cm<sup>3</sup>]

$$\therefore \text{ Number of molecules in } 1 \, cm^3 = \frac{6.023 \times 10^{23}}{22400}$$

#### 23. (c)

Energy of 1 mole of gas 
$$=\frac{f}{2}RT = \frac{f}{2}PV$$

## where f = Degree of freedom

Monoatomic or diatomic both gases posses equal degree of freedom for translational motion and that is equal to 3 *i.e.* f = 3

$$\therefore E = \frac{3}{2}PV$$

Although total energy will be different, For monoatomic gas  $E_{\text{total}} = \frac{3}{2}PV$  [As f = 3]

For diatomic gas  $E_{\text{total}} = \frac{5}{2} PV \text{ [As } f = 5\text{]}$ 

## 24. (c)

Range of specific heat varies from positive to negative and from zero to infinite. It depends upon the nature of process.

#### 25. (b)

We know fraction of given energy that goes to increase the internal energy  $=\frac{1}{\gamma}$ 

So we can say the fraction of given energy that supplied for external work  $= 1 - \frac{1}{\pi}$ .

#### 26. (d)

# NEET/JEE MAIN PRACTICE PAPER 2024-2025

Total internal energy of system

$$= U_{\text{oxygen}} + U_{\text{argon}} = \mu_1 \frac{f_1}{2} RT + \mu_2 \frac{f_2}{2} RT$$
$$= 2 \frac{5}{2} RT + 4 \frac{3}{2} RT = 5 RT + 6 RT = 11 RT$$
$$[\text{As } f_1 = 5 \text{ (for oxygen) and } f_2 = 3 \text{ (for argon)}]$$

27. (c)

$$T_{A} = \frac{P_{A}V_{A}}{n_{A}R} \text{ and } T_{B} = \frac{P_{B}V_{B}}{n_{B}R}$$
  
Given,  $P_{A} = P_{B}$ ,  $V_{A} = V_{B}$  and  $n_{A} = 2n_{B}$   
 $\therefore T_{A} = \frac{T_{B}}{2}$   
Now,  $\frac{V_{A}}{V_{B}} = \sqrt{\frac{T_{A}}{T_{B}} \times \frac{M_{B}}{M_{A}}} = 2$ 

# 28. (d)

$$N = \frac{PV}{KT}$$
$$\frac{N_A}{N_B} = \frac{PV}{KT} \times \frac{K2T}{2P(V/4)} = \frac{4}{1}$$

# 29. (d)

$$\frac{\mathbf{N}_{\mathrm{I}}}{\mathbf{N}_{\mathrm{II}}} = \frac{\mathbf{P}_{\mathrm{I}} \cdot \mathbf{V}_{\mathrm{I}}}{\mathbf{T}_{\mathrm{I}}} \times \frac{\mathbf{T}_{\mathrm{II}}}{\mathbf{P}_{\mathrm{II}} \cdot \mathbf{V}_{\mathrm{II}}} = 1:4$$

# **30.** (b)

$$\frac{2+3}{\gamma_{\min-1}} = \frac{2}{\frac{5}{3}-1} + \frac{1}{\frac{7}{5}-1}$$
$$\frac{3}{\gamma_{\min-1}} = 3 + \frac{5}{2}$$
$$\frac{3}{\gamma_{\min-1}} = \frac{11}{2}$$
$$\gamma_{\min-1} = \frac{6}{11}$$
$$\gamma_{\min} = \frac{6}{11} + 1 = \frac{17}{11}$$