- 1. The number of p-orbital not involved in the hybridisation of middle carbon atom in  $CH_2 = C = CH_2$  is (a) 3 (b) 1 (c) 2 (d) Cannot be predicted
- 2. In the following structure

$$H_{3}C$$
  
 $H_{3}C$   
 $H$ 

how many carbon atom is  $sp^2hybridised$ (a) 1 (b) 2 (c) 3 (d) 4

- 3. The hybridisation of the central atom will change when (a) NH<sub>3</sub> combines with H<sup>+</sup>
  (b) H<sub>3</sub>BO<sub>3</sub> combines with OH<sup>-</sup>
  (c) NH<sub>3</sub> form NH<sub>2</sub><sup>-</sup>
  (d) H<sub>2</sub>O combines with H<sup>+</sup>
- 4. Among the interhalide species

 $IF_2^{\Theta}$ ,  $IF_3$ ,  $IF_4^{\Theta}$  and  $IF_7$ 

(a) All iodine centres are either sp<sup>3</sup>d or sp<sup>3</sup>d<sup>2</sup>hybridised

(b) The minimum angular separation between fluorine atoms is  $60^{\circ}$ 

(c)The anionic species are both isoelectronic and isostructural to XeF2 and XeF4

(d)There is no species having a single lone pair of electrons

- 5. LiF is least soluble among the fluorides of alkali metals, because
  - (a) Smaller size  $Li^+$  impart significant covalent character in LiF
  - (b) The hydration energies of  $Li^{\scriptscriptstyle +}$  and  $F^{\scriptscriptstyle -}$  are quite higher
  - (c) Lattice energy of LiF is quite higher due to the smaller size of Li<sup>+</sup> and F<sup>-</sup>
  - (d) LiF have strong polymeric network in solid
- 6. Which of the following compounds has sp<sup>2</sup>hybridisation ? (a)  $CO_2$  (b)  $SO_2$  (c)  $N_2O$  (d) CO
- 7.  $N(SiH_3)_3$  has -
  - (a) Sp<sup>3</sup>hybridisation, pyramidal shape
  - (b) Sp<sup>2</sup>hybridisation, planar shape
  - (c) Sp<sup>3</sup>hybridisation, tetrahedral shape
  - (d) d sp<sup>2</sup>hybridisation, square planar shape
- **8.** Which of the following angle corresponds to  $sp^2$  hybridisation?

(a)  $90^{\circ}$  (b)  $120^{\circ}$  (c)  $180^{\circ}$  (d)  $109^{\circ}$ 

- 9. On hybridisation of one s and three p-orbitals, we get(a) Four orbitals with tetrahedral orientation(b) Three orbitals with trigonal orientation
  - (c) Two orbitals with linear orientation
  - (d) Two orbitals with perpendicular orientation.
- **10.** Which of the following shown  $dsp^2$  hybridisation and a square planar geometry?

(a)  $SF_6$  (b)  $BrF_5$  (c)  $PCl_5$  (d)  $[Ni(CN)_4]^{2-1}$ 

**11.** Which of the following statements is true about hybridisation?

(a) The hybridized orbitals have different energies for each orbital.

- (b) The number of hybrid orbitals is equal to the number of atomic orbitals that are hybridized.
- (c) Hybrid orbitals form multiple bonds.
- (d) The orbitals with different energies undergo hybridisation.

12. Hybridisation state of Xe in  $XeF_2$ ,  $XeF_4$  and  $XeF_6$  respectively are

| (a) $sp^2$ , $sp^3$ , $d$ , $sp^3d^2$ | (b) $sp^3d, sp^3d^2, sp^3d^3$ |
|---------------------------------------|-------------------------------|
| (c) $sp^3d^2$ , $sp^3d$ , $sp^3d^3$   | (d) $sp^2$ , $sp^3$ , $sp^3d$ |

13. Match the column I with column II and mark the appropriate choice.

|                                                                                                    | Column I                                                                                           | Column II                                         |  |  |  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
|                                                                                                    | (1) $C_2 H_2$                                                                                      | (i) $Sp^{3}d^{2}$ hybridisation                   |  |  |  |
|                                                                                                    | (2) SF <sub>6</sub>                                                                                | (ii) Sp <sup>3</sup> d <sup>3</sup> hydridisation |  |  |  |
|                                                                                                    | (3) SO <sub>2</sub>                                                                                | (iii) sp hybridisation                            |  |  |  |
|                                                                                                    | (4) IF <sub>7</sub>                                                                                | (iv) Sp <sup>2</sup> hybridisation                |  |  |  |
| (8                                                                                                 | $(a) (1) \rightarrow (i), (2) \rightarrow (iii), (3) \rightarrow (ii), (4) \rightarrow (iv)$       |                                                   |  |  |  |
| (b) (1) $\rightarrow$ (iii), (2) $\rightarrow$ (i), (3) $\rightarrow$ (iv), (4) $\rightarrow$ (ii) |                                                                                                    |                                                   |  |  |  |
| (c) (1) $\rightarrow$ (ii), (2) $\rightarrow$ (iii), (3) $\rightarrow$ (i), (4) $\rightarrow$ (iv) |                                                                                                    |                                                   |  |  |  |
| (0                                                                                                 | (d) (1) $\rightarrow$ (iv), (2) $\rightarrow$ (i), (3) $\rightarrow$ (iii), (4) $\rightarrow$ (ii) |                                                   |  |  |  |

14. The hybridisation of the underline atom changes in :

| (a) AlH <sub>3</sub> changes to AlH <sub>4</sub> <sup><math>-</math></sup> | (b) $H_2O$ changes to $H_3O^+$ |
|----------------------------------------------------------------------------|--------------------------------|
| (c) $NH_3$ changes to $NH_4^+$                                             | (d) In all cases               |

- 15. In which of the following compounds B F bond length is shortest ? (a)  $BF_4^-$ (b)  $BF_3 \rightarrow NH_3$ (c) BF3 (d)  $BF_3 \leftarrow N(CH_3)_3$
- **16.** Number of bonds in  $SO_2$  are :

| (a) two $\sigma$ and two $\pi$                 | (b) two $\sigma$ and one $\pi$ |
|------------------------------------------------|--------------------------------|
| (c) two $\sigma$ , two $\pi$ and one lone pair | (d) none of these              |

17. Choose the molecules in which hybridisation occurs in the ground state ?

| (a) $\mathbf{BCl}_{3}$                     |                                           | (b) $NH_3$          | (c) PCl <sub>3</sub>           | (d) $BeF_2$ |
|--------------------------------------------|-------------------------------------------|---------------------|--------------------------------|-------------|
| The co                                     | rrect answer is -                         | -                   |                                |             |
| (a) 1, 2                                   | 2, 4                                      | (b) 1, 2, 3         |                                |             |
| (c) 2, 3                                   | ;                                         | (d) 3, 4            |                                |             |
| <b>18.</b> sp <sup>2</sup> – hybrid        | lisation is shown                         | by :                |                                |             |
| (a) BeCl <sub>2</sub>                      | (b)) BF <sub>3</sub>                      |                     |                                |             |
| (c) NH <sub>3</sub>                        | (d) XeF <sub>2</sub>                      |                     |                                |             |
| <b>19.</b> The hybridis                    | sation of carbon i                        | n diamond, graphit  | e and acetylene is (respective | ely) –      |
| (a) sp <sup>3</sup> , sp <sup>2</sup> , sp | (b) sp <sup>3</sup> , sp, sp <sup>2</sup> |                     |                                |             |
| (c) $sp^2$ , $sp^3$ , $sp$                 | (d) sp, sp <sup>3</sup> , sp <sup>2</sup> |                     |                                |             |
| <b>20.</b> Each carbon                     | in carbon subox                           | ide $(C_3O_2)$ is : |                                |             |
| (a) sp <sup>2</sup>                        | - hybridized                              | (b) sp <sup>3</sup> | -hybridized                    |             |
| (-) 1                                      |                                           | (1) 2               | 1 1 1 1 1 1 1 1 1 1            | 1 1 /       |

(d) sp<sup>2</sup>-hybridized but linked with one co-ordinate bond (c) sp-hybridized

<sup>21.</sup> Among the following pairs in which the two species are not isostructural is :

| www.neetjeenotes.com                                                                             |                                           | NEET/JE                                    | E MAIN PRACTICE P                 | APER 2024-2025 |
|--------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|-----------------------------------|----------------|
| (a) $SiF_4$ and $SF_4$                                                                           | (b) IO <sub>3</sub> - a                   | nd XeO <sub>3</sub>                        |                                   |                |
| (c) $BH_4^-$ and $NH_4^+$                                                                        | (d) $PF_6^-$ and $SF_6^-$                 | -                                          |                                   |                |
| <b>22.</b> Consider the following iodides :                                                      | PI <sub>3</sub>                           | AsI <sub>3</sub>                           | SbI <sub>3</sub>                  |                |
|                                                                                                  | 102°                                      | 100.2°                                     | 99°                               |                |
| The bond angle is maximum i                                                                      | in Pl <sub>3</sub> , which is :           |                                            |                                   |                |
| (a) due to small size of phosp                                                                   | horus (I                                  | b) due to more b                           | p–bp repulsion in PI <sub>3</sub> |                |
| (c) due to less electronegativit                                                                 | ty of P (o                                | d) none of these                           |                                   |                |
| <b>23.</b> $OF_2$ is gS %                                                                        |                                           |                                            |                                   |                |
| <ul><li>(a) Linear molecule and sp hy</li><li>(c) Bent molecule and sp<sup>3</sup> hyb</li></ul> | vbridised (b) Tetral<br>pridised (d) None | nedral molecule a<br>of these              | and sp³ hybridised                |                |
| <b>24.</b> Select the correct statement for the su                                               | alphuric acid.                            |                                            |                                   |                |
| (I) It has high boiling point ar                                                                 | nd viscosity.                             |                                            |                                   |                |
| (II) There are two types of bo                                                                   | nd lengths in its biva                    | lent anion.                                |                                   |                |
| (III) $p\pi$ - $d\pi$ bonding between s                                                          | sulphur and oxygen i                      | s observed.                                |                                   |                |
| (IV) Sulphur has the same hyl                                                                    | bridisation that is of                    | boron in diboran                           | e.                                |                |
| (a) II and III only (b) II                                                                       | , III and IV only                         |                                            |                                   |                |
| (c) I, III and IV only (d) II                                                                    | II and IV only                            |                                            |                                   |                |
| <b>25.</b> Identify the correct match.                                                           |                                           |                                            |                                   |                |
| (i) XeF <sub>2</sub>                                                                             | (a) Centra                                | al atom has sp <sup>3</sup> h              | ybridisation and bent ge          | cometry.       |
| (ii) N <sub>3</sub> -                                                                            | (b) Central atom l                        | nas sp <sup>3</sup> d <sup>2</sup> hybridi | sation and octahedral.            |                |
| (iii) $PCl_{s}(s)$ anion                                                                         | (c) Central atom h                        | nas sp hybridisat                          | ion and linear geometry           |                |
| (iv) $I_2 Cl_6(\ell)$ cation                                                                     | (d) Central atom l                        | nas sp <sup>3</sup> d hybridis             | ation and linear geometr          | ry.            |
| (a) $(i - a)$ , $(ii - b)$ , $(iii - c)$ , $(iv - d)$                                            | (1                                        | b) $(i - d)$ , $(ii - b)$                  | , (iii – d), (iv – c)             |                |
| (c) $(i - b)$ , $(ii - c)$ , $(iii - a)$ , $(iv - d)$                                            | ((                                        | d) $(i - d)$ , $(ii - c)$                  | , (iii − b), (iv − a)             |                |
| <b>26.</b> Correct statement regarding this react                                                | tion :                                    |                                            |                                   |                |
| $BF_3 + NH_3 \longrightarrow [F_3B \leftarrow N]$                                                | H.]                                       |                                            |                                   |                |
| (a) hybridisation of only N ch                                                                   | anges (1                                  | o) hybridisation                           | of only B changes                 |                |
| (c) hybridisation of N and B b                                                                   | both change                               | (d) none of                                | of these.                         |                |
| (a) dsoy N dk ladj.k cnyrk g                                                                     | S (1                                      | o) dsoy B dk lad                           | lj.k cnyrk gSA                    |                |
| (c) N rFkk B nksuksa ds ladj                                                                     | j.k cnyrs gaSA                            | (d) buesa                                  | a ls dksbZ ugha                   |                |
| <b>27.</b> The type of hybrid orbitals used by cl                                                | hlorine atom in CIO-, C                   | $CIO_2^-$ , $CIO_3^-$ and $C$              | $2IO_4^-$ are :                   |                |
| (a) sp. sp <sup>2</sup> . sp <sup>3</sup> and sp <sup>3</sup> d (b) sr                           | $o$ and $sp^3$                            |                                            |                                   |                |
| (c) only $sp^3$ (d) or                                                                           | nly sp                                    |                                            |                                   |                |
| <b>28.</b> The hybridisation of orbitals of N ato                                                | om in $NO_3^-$ , $NO_2^+$ and N           | ${\rm IH}_{4}^{+}$ are respective          | ely :                             |                |
| (a) sp, sp <sup>2</sup> , sp <sup>3</sup> (b) sp <sup>2</sup> , sp, sp                           | 3                                         |                                            |                                   |                |
| (c) sp, sp <sup>3</sup> , sp <sup>2</sup> (d) sp <sup>2</sup> , sp <sup>3</sup> , sp             | p                                         |                                            |                                   |                |
|                                                                                                  |                                           |                                            |                                   |                |

**29.** The species in which the N atom is in a state of sp hybridization is :

(a)  $NO_2^-$  (b)  $NO_3^-$ (c)  $NO_2$  (d)  $NO_2^+$ 

**30.** The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF<sub>4</sub>, respectively, are :

(a)  $sp^3d^2$  and 1(b)  $sp^3d^2$  and 2(c)  $sp^3d$  and 1(d)  $sp^3d$  and 2

#### NEET/JEE MAIN PRACTICE PAPER 2024-2025

1. (c)

The middle carbon atom is sp hybridised therefore the number of p-orbitals not involved in hybridisation is 2

# 2. (d)

Here  $\overset{1}{C}$ ,  $\overset{2}{C}$ ,  $\overset{5}{C}$ , &  $\overset{6}{C}$  are sp<sup>2</sup> hybridised So total no. of carbon atoms having sp<sup>2</sup> configuration is 4

3. (b)  

$$B(OH)_3 + OH^- \rightarrow B(OH)_4^-$$
  
 $sp^2$   $sp^3$ 

# 4. (c)

Hybridisation and structure of  $IF_2^- \rightarrow sp^3d$  & linear Hybridisation and structure of  $XeF_2 \rightarrow sp^3d$  & linear

So Both  $XeF_2$  and  $IF_2^-$  are isostructural and isoeletronic

Hybridisation and structure of  $IF_4^- \rightarrow sp^3d^2$  & square

Planar

Hybridisation and structure of  $XeF_4 \rightarrow sp^3d^2$  & square

Planar

 $\Rightarrow$  Both XeF<sub>4</sub> and IF<sub>4</sub><sup>-</sup> are isoelectronic and isostructural

# 5. (c)

The small size of both  $Li^+$  and  $F^-$  ion leads to a very high value of lattice energy and thus crystal of LiF is very difficult to break

#### 6. (b)

Rest of the molecules are sp hybridized

## 7. (b)

lp of e<sup>-</sup>s of nitrogen is donated to the vacant d-orbital of Si.

- **8.** (b) : The angle corresponds to  $sp^2$  hybridisation triangular planar is  $120^0$
- **9.** (a) :



Four  $sp^3$  hybrid orbitals are formed when one s and three p – orbitals hybridise.

**10.** (d) :



11. (b) : The number of orbitals which hybridise remains same after the hybridisation also. E.e.,



#### NEET/JEE MAIN PRACTICE PAPER 2024-2025



**12.** (b) : 
$$XeF_2 - sp^3d$$



Total no. of valence electrons = 22  $\frac{22}{8} = 2(Q) + 6(R), \frac{6}{2} = 3(Q)$  X = 2 + 3 = 5Hybridisation is sp<sup>3</sup>d. EeF<sub>4</sub> -



Hybridisation is  $sp^{3}d^{2}$ Total no. of electrons in outermost shells = 8 +28 =36  $\frac{36}{8} = 4(Q) + 4(R), \frac{4}{2} = 2(Q) + 0(R)$ X = 4 + 2 + 0 = 6Hybridisation is  $Sp^{3}d^{2}$ XeF<sub>6</sub>



Total no. of valence electrons = 8+42 = 50  $\frac{50}{8} = 6(Q) + 2(R), \frac{2}{2} = 1(Q)$ X= 6+1=7Hybridisation is Sp<sup>3</sup>d<sup>3</sup>.

**13.** (b) : In  $C_2H_2$ , C undergoes, sp hybridisation. Ground state

Excited state

$$\underbrace{\uparrow} \underbrace{\uparrow} \uparrow \uparrow \uparrow$$
 H - C = C - H

In  $SF_6$ , S undergoes  $sp^3$ ,  $d^2$  hybridisation. Ground state)

Excited state

Excited state

#### NEET/JEE MAIN PRACTICE PAPER 2024-2025



In  $So_2$ , S undergoes  $sp^2$  hybridization.

In  $\mathbf{IF}_7 \mathbf{I}$  undergoes  $\mathbf{sp}^3 \mathbf{d}^3 \mathbf{hybridization}$ . Ground state



14. (a)



## 15. (c)

Partial double bond character is developed in B-F bond of BF3 (due to formation of dative p bond)

In other case B is sp<sup>3</sup> hybridised (tetrahedral molecule or ion) and the possibility for  $\pi$  bonding no longer exists.

16. (c)

(c)  $\bigvee_{\sigma \sigma}^{\pi}$ 





(b) Electronic configuration of nitrogen in ground state is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>3</sup>.



(c) Electronic configuration of phosphorus in ground state is 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>3</sup>.



(d) Electronic configuration of boron in ground state is  $1s^22s^2$ .



**18.** (b) Steric number = 0 + 3 = 3; so sp<sup>2</sup> hybridisation

**19.** (a) Diamond  $sp^3$ ; graphite =  $sp^2$ ; Acetylene = sp

$$O = C = C = C = O$$
$$| \qquad | \qquad |$$
$$sp \qquad sp \qquad sp$$

20. (c)

**21.** (a) (a) Tetrahedral and see-saw shaped.



(b) Both are sp<sup>3</sup> hybridised and trigonal pyramid.

- (c) Both are sp<sup>3</sup> hybridised and tetrahedral.
- (d) Both are sp<sup>3</sup>d<sup>2</sup> hybridised and octahedral.



Phosphorus is the most electronegative of the central atoms. Consequently, it exerts the strongest pull on shared electrons, concentrating these electrons near P and increasing bonding pair-bonding pair repulsions–hence, the largest angle in  $PI_3$ . Sb, the least electronegative central atoms, has the opposite effect : Shared electrons are attracted away from Sb, reducing repulsions between the Sb–I bonds. The consequence is that the effect of the lone pair is greatest in  $SbI_3$ , which has the smallest angle.

Atomic size arguments can also be used for these species. Larger outer atoms result in larger angles ; larger central atoms result in smallest angles.

# NEET/JEE MAIN PRACTICE PAPER 2024-2025



www.neetjeenotes.com

| 28. | (b) | $NO_2^+$                                      | Number of electron pairs $= 2$                                                                                                                                                                                                                   |
|-----|-----|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |                                               | Number of bond pairs = 2<br>Number of lone pair = 0<br>So, the species is linear with sp hybridisation.                                                                                                                                          |
|     |     |                                               | O = N = O                                                                                                                                                                                                                                        |
|     |     | NO3-                                          | Number of electron pairs = 3<br>Number of bond pairs = 3<br>Number of lone pair = 0<br>So, the species is trigonal planar with sp <sup>2</sup> hybridisation.<br>$\overline{O} - \overset{+}{N} \overbrace{O}^{\overline{O}} \rightarrow sp^{2}$ |
|     |     | $\mathrm{NH}_4^+$                             | Number of electron pairs = 4<br>Number of bond pairs = 4<br>Number of lone pair = 0<br>So, the species is tetrahedral with sp <sup>3</sup> hybridisation.<br>$\begin{bmatrix} H \\ H \\ H \end{bmatrix}^{+} \rightarrow sp^{3}$                  |
| 29. | (d) | $NO_2^- = sp^2$                               |                                                                                                                                                                                                                                                  |
|     |     | $NO_3^- = sp^2$ $NO_2^- = sp^2$ $NO_2^+ = sp$ |                                                                                                                                                                                                                                                  |
| 30. | (a) | F<br>F<br>F                                   |                                                                                                                                                                                                                                                  |