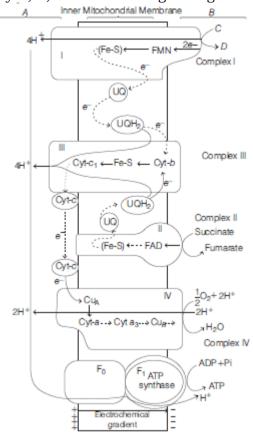
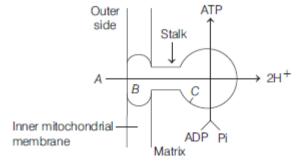
- (d) OAA undergoes 4 oxidations and 2 decarboxylations.
- 10. Correct sequence of events in Kreb's cycle is -
 - (a) Acetyl CoA \rightarrow Citrate \rightarrow Pyruvate \rightarrow α -ketoglutarate \rightarrow Succinate \rightarrow Malate \rightarrow Fumarate \rightarrow OAA
 - (b) Acetyl CoA \rightarrow Citric acid \rightarrow α -ketoglutaric acid \rightarrow Succinic acid \rightarrow Fumaric acid \rightarrow Malic acid \rightarrow OAA
 - (c) Acetyl CoA \rightarrow Citric acid \rightarrow Malic acid \rightarrow α -ketoglutaric acid \rightarrow Succinic acid \rightarrow OAA
 - (d) All are wrong


www.neetjeenotes.com

NEET/JEE MAIN PRACTICE PAPER 2024-2025

- 11. The first 5-C dicarboxylic in Kreb's cycle which is used in nitrogen metabolism is -
 - (a) OAA

- (b) Citric acid
- (c) α-ketoglutaric acid
- (d) Acetyl Coenzyme A
- 12. Inside an active mitochondrion, most electrons follow which pathway?
 - (a) Glycolysis \rightarrow NADH \rightarrow Oxidative Phosphorylation \rightarrow ATP \rightarrow O₂
 - (b) Krebs' cycle \rightarrow FADH₂ \rightarrow ETS \rightarrow ATP
 - (c) ETS \rightarrow Krebs' cycle \rightarrow ATP \rightarrow O₂
 - (d) Krebs' cycle \rightarrow NADH + H⁺ \rightarrow Electron transport chain \rightarrow O₂
- 13. At the end of the Krebs cycle, but before the electron transport chain, the oxidation of glucose has produced a net gain of -
 - (a) 3CO₂, 5 NADH₂, 1FADH₂, 2 ATP
 - (b) 6CO₂, 10 NADH₂, 2 FADH₂, 4 ATP
 - (c) 6CO₂, 10 NADH₂, 2 FADH₂, 38 ATP
 - (d) None of the above is correct
- **14.** Dhich of the following sequences correctly indicates the potential ATP yield of the indicated molecules from greatest ATP yield to least ATP yield?
 - (a) Pyruvate, ethanol, glucose, acetyl CoA
 - (b) Glucose, Pyruvate, acetyl CoA, NADH + H⁺
 - (c) Glucose, FADH₂, Acetyl CoA, Pyruvate
 - (d) Glucose, FADH₂, NADH₂, pyruvate
- **15.** Which one is correct?
 - (a) During the fermentation, 2 molecules of ATP per molecule of glucose is the net gain
 - (b) Oxidative phosphorylation produces the most ATP in the cell
 - (c) During TCA cycle oxidative steps are coupled to the reductions of e⁻ carriers
 - (d) All
- 16. Most ATP in our bodies is made by-
 - (a) Glycolysis
- (b) TCA cycle
- (c) Burning fat
- (d) ATP synthase
- 17. Which of the following conversions represents a reduction reaction?
 - (a) Pyruvate → Acetyl CoA
 - (b) NADH + $H^+ \rightarrow NAD^+ + 2H$
 - (c) $3 \text{ PGAld} \rightarrow \text{Pyruvate}$
 - (d) Acetyldehyde \rightarrow Ethanol
- **18.** During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP?
- (a) Conversion of pyruvic acid to acetyl Co-A
- (b) Electron transport chain
- (c) Glycolysis
- (d) Krebs' cycle
- **19.**The main purpose of electron transport chain is to
- (a) release and utilise energy stored in NADH+ H+ and FADH2
- (b) use the intermediate from TCA cycle
- (c) breakdown pyruvic acid
- (d) All of the above
- **20.**The *e* carrier molecules and cytochrome
- (a) are reduced as they pass electrons on to next molecule
- (b) transfer electrons between the electron complexes
- (c) shuttle protons to ATP synthase
- (d) are found in outer mitochondrial membrane


21. Identify A, B, C and D in the given figure of electron transport chain.

	A	В	C	D
(a)	Matrix	Outer chamber	FMNH ₂	NADH ₂
(b)	Inter-membrane space	Matrix	NADH+ H ⁺	NAD ⁺
(c)	Inter-membrane space	Cristae	NAD ⁺	NADH + H ⁺
(d)	Cristae	Outer chamber	NADH + H ⁺	NAD+

- 22. The initial step in the biosynthesis of ATP by chemiosmosis in the mitochondria is the
- (a) pumping of protons in the outer chamber
- (b) pumping of electrons in the matrix
- (c) action of ATP synthase
- (d) formation of metabolic water
- 23. Which of the following shows correct order of flow of electrons in ETC?
 - (a) Fe-S \rightarrow NADH \rightarrow Co-Q \rightarrow Cyt- $b\rightarrow$ Fe-S \rightarrow Cyt- $c\rightarrow$ Cyt- $a3\rightarrow$ O2 \rightarrow Cyt-b
 - (b) NADH \rightarrow FMN \rightarrow Fe-S \rightarrow Co-Q \rightarrow Cyt- $b\rightarrow$ Fe-S \rightarrow Cyt- $c1\rightarrow$ Cyt- $e\rightarrow$ Cyt- $a\rightarrow$ Cyt- $a3\rightarrow$ O2
 - (c) NADH \rightarrow Cyt- $c1\rightarrow$ Cyt- $c\rightarrow$ Cyt- $a\rightarrow$ Cyt- $a3\rightarrow$ O2 \rightarrow FMN \rightarrow Fe-S \rightarrow Co-Q \rightarrow Cyt- $b\rightarrow$ Fe-S
 - (d) $Cvt-c1 \rightarrow Cvt-c \rightarrow Cvt-a \rightarrow Cvt-a3 \rightarrow NADH \rightarrow FMN \rightarrow Fe-S \rightarrow Co-O \rightarrow Cvt-b \rightarrow Fe-S \rightarrow O2$
- **24.**In the electron transport system present in the inner mitochondrial membrane, complex-I and IV are, respectively
- (a) NADH dehydrogenase and FADH2
- (b) NADH2 and NADH dehydrogenase
- (c) NADH dehydrogenase and cytochrome oxidase complex
- (d) NADH dehydrogenase and ATP synthetase
- 25. Which one of following is complex-V of the ETS of inner mitochondrial membrane?
- (a) NADH dehydrogenase
- (b) Cytochrome oxidase
- (c) Ubiquinone
- (d) ATP synthase
- **26.** In electron transport system, which of the following acts as a final electron acceptor?
- (a) Oxygen
- (b) Hydrogen
- (c) Calcium
- (d) Ubiquinone
- **27.** Which of the following processes takes place in mitochondria?

- (a) Photolysis
- (b) Photophosphorylation
- (c) Carboxylation
- (d) Oxidative phosphorylation
- 28. Oxidative phosphorylation is NEET 2016
- (a) formation of ATP by transfer of phosphate group from a substrate to ADP
- (b) oxidation of phosphate group in ATP
- (c) addition of phosphate to ATP
- (d) formation of ATP by energy released from electron removed during substrate oxidation
- 29. In which part of mitochondria does ATP synthesis occur?
- (a) F₁
- (b) Fo
- (c) Cristae
- (d) Inner membrane of mitochondria
- **30.**Given below is the diagrammatic presentation of ATP synthesis in mitochondria. Identify *A-C* and choose the correct option accordingly.

- (a) $A H^+$, $B F_1$, $C F_0$ (b) $A 3H^+$, $B F_0$, $C F_1$
- (c) $A 2H^{+}$, $B F_{0}$, $C F_{1}$ (d) $A 5H^{+}$, $B F_{1}$, $C F_{0}$

ww	w.n	neetjeenotes.com N	NEET/JEE MAIN PRACTICE PAPER 2024-2025				
1.	(d)						
2.	(c)						
	3.	(a)					
	4.						
	5.	(c)					
6.	(d)						
7.	(b)						
8.	(a)						
9.	(a)						
10.	(b)						
11.	(c)						
	(d)						
	(b)						
14.	(b)						
15.	(d)						
16.	(d)						
17.	(d)						
18.	(b)	The number of glucose molecules produced in each reaction invo	olved in complete glucose oxidation are				
	_	roduces - 34 ATP					
		lysis produces - 2 ATP					
		cycle produces - 2 ATP					
Pyruvic acid to acetyl Co-A conversion produces no ATP							
In	us, ti	the highest number of ATP molecules are obtained through	EIC.				
19.	This	The main purpose of ETC (Electron Transport Chain) is to release is is accomplished when these are oxidised through the electron traulting in the formation of H O 2 .					
20.	(a)						
21.	(b)						
	(a)						
	(b)						
	(c) (d)						
	(a)						
	(d)						

www.neetjeenotes.com		NEET/JEE MAIN PRACTICE PAPER 2024-2025				
28	(a)					
∠0. 20	(a) (a) (c)					
<u>⊿</u> ۶.	(a)					
3 0.	(C)					
		1				
		1				
		1				
		1				
		1				
		1				
		1				
	BY SWADH	IN SIR				