ww	w.neetjeenotes.com			NEET/JEE MAIN PRACTICE PAPER 2024-2025
1.	Starting with 2 moles of PCl ₅ in 1 litre container, 0.5 moles of PCl ₅ dissociates till equilibrium at 25°C. Equilibrium constant K_{c} is :			
	(a)6 (b)4.5	$(c)\frac{1}{6}$ (6)	l)None	
2.	The r.m.s. speed of mole (a)300 m s ^{-1} (b)900 m	ecules of a gas of s^{-1} (c)600 m s	density 4.0 kg s ⁻¹ (d)400 n	m^{-3} and pressure $1.2\times 10^5~Nm^{-2}$ is - 1 s^{-1}
3.	In a chemical reaction, t for the forward reaction (a) 5×10^{-4} (c) 1.125×10^{-3}	he rate constant fo is - (b)2 > (d)9.0	the backward $(10^{-3}) \times 10^{-4}$	d reaction is 7.5×10^{-4} and the equilibrium constant is 1.5. The rate constant
4.	$\begin{array}{ll} \mbox{For the equilibrium} & \mbox{N} \\ \mbox{K}_c = 1.8 \times 10^{-4} \mbox{ at } 298 \mbox{ K} \\ \mbox{(a)} 0.108 & \mbox{(b)} 4.4 \times 10^{-3} \end{array}$	$H_4HS(s) = NH$ $H_4HS(s) = NH$ L The value of K_p $(c)1.8 \times 10^{-4}$	$_{3}(g) + H_{2}S(g)$ at 298 K wou (d)4.4 × 10 ⁻⁴	ld be -
5.	If K for the reaction 2H 2HI(g) at the same temp	$I(g) \Longrightarrow H_2(g) +$ berature would be	$I_2(g)$, is 0.025	at a certain temperature, the value of K for the reaction $H_2(g) + I_2(g) \Longrightarrow$
	(a)10 (b)40	(c) √30	(d) √40	
6.	The dissociation constant will be approximately (a)1:4 (b)4:1	nts of two acids H (c)1 : 16 (d	A_1 and HA_2 add) 16 : 1	re 3.0×10^{-4} and 1.8×10^{-5} respectively. The relative strengths of the acids
7.	The equilibrium constan	it, K_p for the react	ion	
	$2SO_2(g) + O_2(g) \nabla$			
	is 4.0 atm ⁻¹ at 1000 K.	What would be th	e partial press	ure of O_2 if at equilibrium the amount of SO_2 and SO_3 is the same ?
	(a) 16.0 atm (c) 1 atm	(b) 0.25 at (d) 0.75 at	m m	
8.	For the reaction $A_2(g)$ the partial pressure of A equilibrium constant K_p (a) 20 (b) 5.0	+ $2B_2 = 2$ A ₂ , B ₂ at equilibrities will be (c) 0.02	C ₂ (g) um are 0.80 a (d) 0.2	tm and 0.40 atm respectively. The pressure of the system is 2.80 atm. The
9.	If the anions (a) form he the compound is (a) CA (b) CA	exagonal closest p A ₂ (c) C ₂ A ₃	acking and ca (d) C ₃ A ₂	tions(c) occupy only 2/3 octahedral voids in it, then the general formula of
10.	For the reaction N_2O_4 ($(g) \rightleftharpoons 2NO_2$	g), if percenta	ge dissociation of N_2O_4 are 20%, 45%, 65% & 80%, then the sequence of
	observed vapour densiti (a) d_{20} > d_{45} > d_{65} > d_{80} (c) d_{20} = d_{45} = d_{65} = d_{80}	es will be : (b) $d_{80} > d_{30}$ (d) ($d_{20} =$	d ₆₅ > d ₄₅ > d ₂₀ d ₄₅) > (d ₆₅ =	= d ₈₀)
11.	Solid ammonium carbar	nate dissociate to	give ammonia	and carbon dioxide as follows
	$NH_2COONH_4(s)$ which of the following (a)	\rightarrow 2NH ₃ (g) + g graph correctly	CO ₂ (g) represents the	equilibrium.
1				

- **12.** The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is (a) $-\Delta G^0 = RT \ln K$ (b) $\Delta G = RT \ln K$ (c) $-\Delta G = RT \ln K$ (d) $\Delta G^0 = RT \ln K$
- **13.** Equilibrium constant for the following equilibrium is given at 0° C. Na₂HPO₄ . 12H₂O (s) \implies Na₂HPO₄ .

7H₂O (s) + 5H₂O(g) K_P = 31.25×10^{-13}

At equilibrium what will be partial pressure of water vapour :

- (a) $\frac{1}{5} \times 10^{-3}$ atm (b) 0.5×10^{-3} atm (c) 5×10^{-2} atm (d) 5×10^{-3} atm.
- 14. A liquid is in equilibrium with its vapour at its boiling point. On the average the molecules in the two phases have equal :
 (a) Inter molecular forces
 (b) Potential energy
 (c) Kinetic energy
 (d) None of these .

NEET/JEE MAIN PRACTICE PAPER 2024-2025

www.neetjeenotes.com

NEET/JEE MAIN PRACTICE PAPER 2024-2025

15. Given the following reaction at equilibrium

 $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$. Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected

- (a) More $NH_3(g)$ is produced
- (b) Less $NH_3(g)$ is produced
- (c) No affect on the equilibrium
- (d) K_p of the reaction is decreased

16. Introduction of inert gas (at the same temperature) will affect the equilibrium if :

- (a) Volume is constant and $\Delta n_g \neq 0$
- (b) Pressure is constant and $\Delta n_g \neq 0$
- (c)volume is constant and $\Delta n_g = 0$
- (d) Pressure is constant and $\Delta n_g = 0$
- 17. In the preceeding problem, if $[A^+]$ and $[AB_2^{\Box}]$ are y and x respectively, under equilibrium produced by adding the substance AB to the solvents, then K_1/K_2 is equal to

(a)
$$\frac{y}{x}(y-x)^2$$

(b) $\frac{y^2(x+y)}{x}$
(c) $\frac{y^2(x+y)}{x}$
(d) $\frac{y}{x}(x-y)$

18. The equilibrium constant for the reaction, $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ at temperature T is 4×10^{-4} . The value of K_c for the reaction, $NO(g) \rightleftharpoons N_2(g) + \frac{1}{2} O_2(g)$ at the same temperature is (a) 2.5×10^2 (b) 0.02 (c) 4×10^{-4} (d) 50

- 19. For the reaction, $2NO_2(g) \stackrel{\longrightarrow}{\longrightarrow} 2NO(g) + O_2(g)$, $(K_C = 1.8 \times 10^{-6} \text{ at } 184^{\circ}\text{C})$ (R = 0.0831 kJ/(mol.K))When K_p and K_c are compared at 184°C it is found that (a) Whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure (b) $K_p = K_c$ (c) K_p is less than K_c (d) K_p is greater than K_c
- **20.** For the following three reactions a, b and c, equilibrium constants are given: (a)CO(g) + H₂O(g) CO₂(g) + H₂(g); K₁

(b)CH₄(g) + H₂O(g) CO(g) + 3H₂(g); K₂

 $(c)CH_4(g) + 2H_2O(g) CO_2(g) + 4H_2(g); K_3$

Which of the following relations is correct ? (a) $K_2 K_3 = K_1$ (b) $K_3 = K_1 K_2$

(c)
$$K_3 K_2^3 = K_1^2$$
 (d) $K_1 \sqrt{K_2} = K_3$

- 21. A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of the CO₂ is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is :
 (a) 1.8 atm
 (b) 3 atm
 (c) 0.3 atm
 (d) 0.18
- **22.** Ratio of active masses of 22 g CO₂, 3g H₂ and 7g N₂ in a gaseous mixture : (a)22:3:7 (b) 0.5:3:7 (c) 1:3:1 (d) 1:3:0.5

www.neetjeenotes.com

NEET/JEE MAIN PRACTICE PAPER 2024-2025

23. $PCl_5 \longrightarrow PCl_3 + Cl_2$ in the reversible reaction the moles of PCl_5 , PCl_3 and Cl_2 are a, b and c respectively and total pressure is P then value of K_p is :

(a)
$$\frac{bc}{a}$$
.RT
(b) $\frac{b}{(a+b+c)}$.F
(c) $\frac{bc.P}{a(a+b+c)}$
(d) $\frac{c}{(a+b+c)}$.P

24. The degree of dissociation of PCl₅(a) obeying the equilibrium, PCl₅ \longrightarrow PCl₃ + Cl₂, is approximately related to the presure at equilibrium by (given a << 1):

(a)
$$\alpha \propto P$$
 (b) $\alpha \propto \frac{1}{\sqrt{P}}$ (c) $\alpha \propto \frac{1}{P^2}$ (d) $\alpha \propto \frac{1}{P^4}$

25. In the system, $LaCl_3(s) + H_2O(g) + heat \implies LaClO(s) + 2HCl(g)$, equilibrium is established. More water vapour is added to restablish the equilibrium. The pressure of water vapour is doubled. The factor by which pressure of HCl is changed is: (b) $\sqrt{2}$ (c) $\sqrt{3}$ (d) $\sqrt{5}$ (a) 2

26. Some quantity of water is contained in a container as shown in figure. As neon is added to this system at constant pressure, the amount of liquid water in the vessel

(a) Increases (b) Decreases (c) Remains same (d) Changes unpredictably

- 27. When a bottle of cold drink is opened, the gas comes out with a fizz due to :
 - (a) Decrease in temperature
 - (b) Increase in pressure
 - (c) Decrease in pressure suddenly which results in decrease of solubility of CO2 gas in water
 - (d) None

28. In the Haber process for the industrial manufacturing of ammonia involving the reaction,

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ at 200 atm pressure in the presence of a catalyst, a temperature of about 500°C is used. This is considered as optimum temperature for the process because

(a) Yield is maximum at this temperature

- (b) Catalyst is active only at this temperature
- (c) Energy needed for the reaction is easily obtained at this temperature
- (d) Rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.

29. For the reaction, $CO(g) + Cl_2(g) \longrightarrow COCl_2(g)$ then K_p/K_c is equal to : (b) 1.0 (c) \sqrt{RT}

(a) 1/RT (d) RT

30. Consider the following reversible gaseous reactions (at 298 K) :

(a)
$$N_2O_4$$
 $2NO_2(a) N_2O_4$ $2NO_2$
(b) $2SO_2 + O_2$ $2SO_3$
(c) $2HI$ $H_2 + I_2$
(d) $X + Y$ $4Z$

www.neetjeenotes.com

NEET/JEE MAIN PRACTICE PAPER 2024-2025

1. (c) $PCl_5 \implies PCl_3 + Cl_2$ 2 0 1.5 0.5 0.5 $K_{\rm C} = \frac{(0.5)(0.5)}{1.5}$ 2. (a) $u = \sqrt{\frac{3P}{d}}$ 3. (c) $\mathbf{K} = \frac{\mathbf{K}_{\mathrm{f}}}{\mathbf{K}_{\mathrm{b}}}$ **4.** (a) $K_p = K_c (RT)^{\Delta n}g$ 5. (b) $\frac{1}{K} = \frac{1}{0.025} = 40$ 6. (b) $\frac{\text{st.of HA}_1}{\text{st.of HA}_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$

7. (b)

$$2SO_{2} (g) + O_{2} \rightleftharpoons 2SO_{3}(g)$$

$$Kp = 4.0 \text{ atm}^{-2}$$

$$K_{p} = \frac{(SO_{3})^{3}}{(SO_{2})^{2} (O^{2})}$$

Given that at equilibrium the amount of SO_2 and SO_3 is the

0

same so

$$\frac{(\mathrm{SO}_3)^2}{(\mathrm{SO}_2)^2(\mathrm{O}^2)} = 4$$
$$\implies \Box [\mathrm{O}_2] = \frac{1}{4} = 0.25 \text{ atm.}$$

8. (a)

 $A_2(g) + 2B_2(g)$ $\implies 2C_2(g)$ $P_{A2} = 0.80$ atm., $P_{B2} = 0.4$ atm. Total pressure of the system = 2.8 atm. ∴ P_{C2} = 2.8 - 0.8 - 0.4 = 1.6 P_2^2 (c. c)²

$$K_{p} = \frac{P_{C_{2}}}{P_{A_{2}} \times P_{B_{2}}^{3}} = \frac{(1.6)^{2}}{0.8 \times (0.4)^{2}} = 20$$

9. (c)

No. of A atoms = 6.

No. of C atoms =
$$6 \times \frac{2}{3} = 4$$
.
 \therefore Formula = C₄A₆ or C₂A₃

10. (a)

 $(VD)_{mix} \frac{M_{mix}}{2} = \frac{M}{2(1+\alpha)}$

so, as α increases (VD)_{mix} decreases.

11. (c)

Gas product concentration increases while that of solid reactant is constant.

12. (a)

From thermodynamics.

13. (d)

Na₂HPO₄.12H₂O(s)
Na₂HPO₄.7H₂O (s) + 5H₂O (g)
$$K_P = 31.25 \times 10^{-13}$$

 $K_P = (P_{H_{2O}})^5$
 $(P_{H_{2O}})^5 = 31.25 \times 10^{-3}$
 $(P_{H_{2O}}) = (3125)^{1/5} \times (10^{-15})^{1/5}$
 $(P_{H_{2O}}) = 5 \times 10^{-3}$

14. (d)

At equilibrium between liquid and vapour, molecules have same kinetic energy.

15. (b)

On adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.

16. (b)

For constant volume, reaction quotient (Q) will remain constant.

17. (a)

$$AB \rightleftharpoons A^{+} + B^{-} \qquad AB + B^{-} \swarrow AB_{2}^{-}$$

$$a - x - y \qquad y \qquad (y - x) \qquad (a - x - y) \qquad y - x \qquad x$$

$$K_{1} = \frac{y(y - x)}{(a - x - y)} \qquad K_{2} = \frac{x}{(a - x - y)(y - x)}$$

$$\frac{K_{1}}{K_{2}} = \frac{\frac{y(y - x)}{(a - x - y)(y - x)}}{\frac{K_{1}}{(a - x - y)(y - x)}}$$

$$\Rightarrow \qquad \frac{K_{1}}{K_{2}} = \frac{y}{x}(y - x)^{2}$$

18. (d)

$$N_2(g) + O_2(g) = 2NO(g);$$

 $K_c = \frac{[NO]^2}{[N_2][O_2]} = 4 \times 10^{-4}$

$$K_p = K_c (RT)^{\Delta n}$$
 $\Delta n = 3 - 2 = 1$
 $K_p = K_c (0.0821 \times 457)^1 \cdot K_p > K_c.$

20. (b)

c = a + b

21. (a)

$$CO_{2}(g) + C(s) = 2CO(g)$$

$$0.5 \text{ atm} \qquad 0.5 - p \qquad 2p$$

$$Total \text{ pressure} = 0.5 - P + 2P = 0.8$$

$$P = 0.3$$

$$K_{p} \frac{P_{CO}^{2}}{P_{CO_{2}}} = \frac{(2P)^{2}}{(0.5 - P)} = \frac{(0.6)^{2}}{(0.5 - 0.3)}$$

$$K_{p} = 1.8$$

Moles of $CO_2 = \frac{22}{44} = \frac{1}{2}$ Moles of $H_2 = \frac{3}{2}$ Moles of $N_2 = \frac{7}{28} = \frac{1}{4}$ Ratio of active masses = 1/2 : 3/2 : 1/4 or 1:3:0.5

23. (c)

$$Kp = \frac{P'PCl \times P'Cl_2}{P'PCl_5} = \frac{\frac{b}{(a+b+c)}P \times \frac{c}{(a+b+c)} \times P}{\frac{a}{(a+b+c)}P}$$
$$K_p = \frac{bc.P}{a(a+b+c)}$$

24. (b)

$$K_{\rm P} = \frac{\alpha^2}{1 - \alpha^2} P \approx \alpha^2 P.$$

so, $\alpha \approx \sqrt{\frac{K_{\rm P}}{P}}$

25. (b)

 $LaCl_{3}(s) + H_{2}O(g) + heat \longrightarrow LaClO(s) + 2HCl(g)$ $K_{p} = \frac{p_{HCl}^{2}}{p_{H_{2}O}} = \frac{p_{HCl}^{2}}{2p_{H_{2}O}} \qquad p_{HCl} = \sqrt{2}P_{HCl}$

26. (b)

 $H_2O(\ell) \iff H_2O(g)$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

NEET/JEE MAIN PRACTICE PAPER 2024-2025

$$\mathbf{K}_{\mathrm{p}} = \left(\mathbf{P}_{\mathrm{H}_{2}\mathrm{O}}\right)$$

When neon is added at constant pressure, we have to increase volume of the container. So more water will evaporate to mantain equilibrium

27. (c)

Solubility of gas is directly proportional to the pressure of gas above liquid.

28. (d)

On increasing temperature though reaction equilibrium shifts in the backward direction but for rate of reaction to be higher, higher temperature is required and particle 500°C is found to be optimum temperature.

29. (a)

 $CO(g) + CI_2(g) \longrightarrow COCI_2(g)$ $\Delta n = 1 - 2 = -1; \quad K_p = K_c (RT)^{\Delta n} \quad \therefore \qquad \frac{K_p}{K_c} = (RT)^{-1} = \frac{1}{RT}$

30. (a)

Use
$$K_p = K_c (RT)^{\Delta ng}$$