

- **12.** The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is $(a) - \Delta G^0 = RT \ln K$ (b) ΔG = RT ln K $(c) - \Delta G = RT \ln K$ (d) ΔG^0 = RT ln K
- **13.** Equilibrium constant for the following equilibrium is given at 0° C. $Na₂HPO₄$. 12H₂O (s) \Longrightarrow Na₂HPO₄.

 $7H_2O(s) + 5H_2O(g)$ Kp = 31.25×10^{-13}

At equilibrium what will be partial pressure of water vapour :

14. A liquid is in equilibrium with its vapour at its boiling point. On the average the molecules in the two phases have equal : (a) Inter molecular forces (b) Potential energy (c) Kinetic energy (d) None of these .

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

15. Given the following reaction at equilibrium

 $N_2(g) + 3H_2(g)$ $\overline{}$ 2NH₃(g). Some inert gas at constant pressure is added to the system. Predict which of the following facts will be affected

(a) More $NH₃(g)$ is produced

- (b) Less $NH₃(g)$ is produced
- (c) No affect on the equilibrium
- (d) K_p of the reaction is decreased

16. Introduction of inert gas (at the same temperature) will affect the equilibrium if :

- (a) Volume is constant and $\Delta n_g \neq 0$
- (b) Pressure is constant and $\Delta n_g \neq 0$
- (c) volume is constant and $\Delta n_g = 0$
- (d) Pressure is constant and $\Delta n_g = 0$
- **17.** In the preceeding problem, if $[A^+]$ and $[AB_2^{\square}]$ are y and x respectively, under equilibrium produced by adding the substance AB to the solvents, then K_1/K_2 is equal to

(a)
$$
\frac{y}{x}(y-x)^2
$$

\n(b) $\frac{y^2(x+y)}{x}$
\n(c) $\frac{y^2(x+y)}{x}$
\n(d) $\frac{y}{x}(x-y)$

18. The equilibrium constant for the reaction, $N_2(g) + O_2(g)$ \implies 2NO(g) at temperature T is 4×10^{-4} . The value of K_c for the reaction, NO(g) $\overline{}$ N₂ (g) + $\frac{1}{2}$ $\frac{1}{2}$ O₂ (g) at the same temperature is (a) 2.5×10^2 (b) 0.02 (c) 4×10^{-4} (d) 50

- **19.** For the reaction, $2NO_2(g) \rightleftharpoons 2 NO(g) + O_2(g)$, $(K_C = 1.8 \times 10^{-6}$ at 184⁰C) $(R = 0.0831 \text{ kJ/(mol.K)})$ When K_p and K_c are compared at 184 \degree C it is found that (a) Whether K_p is greater than, less than or equal to K_c depends upon the total gas pressure (b) $K_p = K_c$ (c) K_p is less than K_c (d) K_p is greater than K_c
- **20.** For the following three reactions a, b and c, equilibrium constants are given: $(a)CO(g) + H_2O(g) CO_2(g) + H_2(g); K_1$

(b)CH₄(g) + H₂O(g) CO(g) + 3H₂(g); K₂

 $(c)CH_4(g) + 2H_2O(g) CO_2(g) + 4H_2(g); K_3$

Which of the following relations is correct ?

(a)
$$
K_2 K_3 = K_1
$$

\n(b) $K_3 = K_1 K_2$
\n(c) $K_3 K_2^3 = K_1^2$
\n(d) $K_1 \sqrt{K_2} = K_3$

- **21.** A vessel at 1000 K contains CO_2 with a pressure of 0.5 atm. Some of the CO_2 is converted into CO on the addition of graphite. If the total pressure at equilibrium is 0.8 atm, the value of K is : (a) 1.8 atm (b) 3 atm (c) 0.3 atm (d) 0.18
- **22.** Ratio of active masses of 22 g CO₂, 3 g H₂ and 7 g N₂ in a gaseous mixture : (a) $22 : 3 : 7$ (b) $0.5 : 3 : 7$ (c) $1 : 3 : 1$ (d) $1 : 3 : 0.5$

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

23. PCl₅ \leq PCl₃ + Cl₂ in the reversible reaction the moles of PCl₅, PCl₃ and Cl₂ are a, b and c respectively and total pressure is P then value of K_p is :

(a)
$$
\frac{bc}{a}
$$
.RT
\n(b) $\frac{b}{(a+b+c)}$.P
\n(c) $\frac{bc.P}{a(a+b+c)}$
\n(d) $\frac{c}{(a+b+c)}$.P

24. The degree of dissociation of $PCl_5(a)$ obeying the equilibrium, $PCl_5 \leq PCl_3 + Cl_2$, is approximately related to the presure at equilibrium by (given $a \ll 1$) :

(a)
$$
\alpha \propto P
$$
 (b) $\alpha \propto \frac{1}{\sqrt{P}}$ (c) $\alpha \propto \frac{1}{P^2}$ (d) $\alpha \propto \frac{1}{P^4}$

25. In the system, $\text{LaCl}_3(s) + \text{H}_2\text{O}(g) + \text{heat} \le \text{LaClO}(s) + 2\text{HCl}(g)$, equilibrium is established. More water vapour is added to restablish the equlibrium. The pressure of water vapour is doubled. The factor by which pressure of HCl is changed is: (a) 2 (b) $\sqrt{2}$ $(c)\sqrt{3}$ (d) $\sqrt{5}$

26. Some quantity of water is contained in a container as shown in figure. As neon is added to this system at constant pressure, the amount of liquid water in the vessel

- (a) Increases (b) Decreases
- (c) Remains same (d) Changes unpredictably
- **27.** When a bottle of cold drink is opened, the gas comes out with a fizz due to :
	- (a) Decrease in temperature
	- (b) Increase in pressure
	- (c) Decrease in pressure suddenly which results in decrease of solubility of CO_2 gas in water
	- (d) None

28. In the Haber process for the industrial manufacturing of ammonia involving the reaction,

 $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ at 200 atm pressure in the presence of a catalyst, a temperature of about 500^oC is used. This is considered as optimum temperature for the process because

- (a) Yield is maximum at this temperature
- (b) Catalyst is active only at this temperature
- (c) Energy needed for the reaction is easily obtained at this temperature
- (d) Rate of the catalytic reaction is fast enough while the yield is also appreciable for this exothermic reaction at this temperature.

29. For the reaction, $CO(g) + Cl_2(g)$ $\overline{COCl_2(g)}$ then K_p/K_c is equal to :

(a) $1/RT$ (b) 1.0 (c) \sqrt{RT} (d) RT

30. Consider the following reversible gaseous reactions (at 298 K) :

(a) N₂O₄
$$
\overline{\smile}
$$
 2NO₂(a) N₂O₄ $\overline{\smile}$ 2NO₂
\n(b) 2SO₂ + O₂ $\overline{\smile}$ 2SO₃
\n(c) 2HI $\overline{\smile}$ H₂ + I₂
\n(d) X + Y $\overline{\smile}$ 4Z

1. (c)
\n
$$
PCl_5 \implies PCl_3 + Cl_2
$$
\n2 0 0
\n1.5 0.5 0.5
\n
$$
K_C = \frac{(0.5)(0.5)}{1.5}
$$

2. (a)

$$
u = \sqrt{\frac{3P}{d}}
$$

$$
\begin{vmatrix} 3. & \text{(c)} \\ & \text{K} = 1 \end{vmatrix}
$$

$$
K = \frac{K_f}{K_b}
$$

4. (a)
\n
$$
K_p = K_c (RT)^{\Delta n} g
$$

$$
5. \quad (b)
$$

$$
\frac{1}{K} = \frac{1}{0.025} = 40
$$

$$
6. (b)
$$

$$
\frac{\text{st.of HA}_1}{\text{st.of HA}_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}
$$

$$
7. (b)
$$

$$
2SO_2(g) + O_2 \xrightarrow{\text{SO}_3(g)} 2SO_3(g)
$$

\n
$$
K_p = 4.0 \text{ atm}^{-2}
$$

\n
$$
K_p = \frac{(SO_3)^3}{(SO_2)^2 (O^2)}
$$

Given that at equilibrium the amount of SO_2 and SO_3 is the

same so

$$
\frac{(SO_3)^2}{(SO_2)^2 (O^2)} = 4
$$

\n⇒ □ [O₂] = $\frac{1}{4}$ = 0.25 atm.

8. (a)

 $A_2(g) + 2B_2(g) \implies 2C_2(g)$ $P_{A2} = 0.80$ atm., $P_{B2} = 0.4$ atm. Total pressure of the system $= 2.8$ atm. \therefore P_C 2 = 2.8 – 0.8 – 0.4 = 1.6

$$
K_{p} = \frac{P_{C_2}^2}{P_{A_2} \times P_{B_2}^3} = \frac{(1.6)^2}{0.8 \times (0.4)^2} = 20
$$

9. (c)

No. of A atoms $= 6$.

BY SWADHIN SIR

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

No. of C atoms =
$$
6 \times \frac{2}{3} = 4
$$
.
\n \therefore Formula = C₄A₆ or C₂A₃.

10. (a)

$$
(VD)_{mix} \frac{M_{mix}}{2} = \frac{M}{2(1+\alpha)}
$$

so, as α increases (VD) $_{mix}$ decreases.

11. (c)

Gas product concentration increases while that of solid reactant is constant.

12. (a)

From thermodynamics.

13. (d)

Na₂HPO₄.12H₂O(s)
$$
\Longleftrightarrow
$$
 Na₂HPO₄.7H₂O (s) + 5H₂O (g) $K_P = 31.25 \times 10^{-13}$
\n
$$
K_P = (P_{H_{2O}})^5
$$
\n
$$
(P_{H_{2O}})^5 = 31.25 \times 10^{-3}
$$
\n
$$
(P_{H_{2O}}) = (3125)^{1/5} \times (10^{-15})^{1/5}
$$
\n
$$
(P_{H_{2O}}) = 5 \times 10^{-3}
$$

14. (d)

At equilibrium between liquid and vapour, molecules have same kinetic energy.

15. (b)

On adding inert gas at constant pressure effect on equilibrium will be similar to as if volume of container has been increased.

16. (b)

For constant volume, reaction quotient (Q) will remain constant.

17. (a)

$$
AB \iff A^+ + B^- \qquad AB + B^- \iff AB_2^-
$$

\n
$$
a-x-y \qquad y \qquad (y-x) \qquad (a-x-y) \qquad y-x \qquad x
$$

\n
$$
K_1 = \frac{y(y-x)}{(a-x-y)} \qquad K_2 = \frac{x}{(a-x-y)(y-x)}
$$

\n
$$
\frac{K_1}{K_2} = \frac{y(y-x)}{(a-x-y)(y-x)}
$$

\n
$$
\Rightarrow \qquad \frac{K_1}{K_2} = \frac{y}{x}(y-x)^2
$$

18. (d)

$$
N_2(g) + O_2(g) \implies 2NO(g);
$$

$$
K_c = \frac{[NO]^2}{[N_2][O_2]} = 4 \times 10^{-4}
$$

$$
19. (d)
$$

$$
K_p = K_c (RT)^{\Delta n} \qquad \Delta n = 3 - 2 = 1.
$$

\n
$$
K_p = K_c (0.0821 \times 457)^1 . K_p > K_c.
$$

20. (b)

$$
c=a+b
$$

21. (a)

CO₂(g) + C(s)
\n0.5 atm
$$
0.5-p
$$
 2PO (g)
\nTotal pressure = 0.5 - P + 2P = 0.8
\nP = 0.3
\n $K_p \frac{P_{CO}^2}{P_{CO_2}} = \frac{(2P)^2}{(0.5 - P)} = \frac{(0.6)^2}{(0.5 - 0.3)}$
\n $K_p = 1.8$

$$
22. (d)
$$

BY_S(g) $\frac{1}{\sqrt{5}}$ **B**_S = **K**₂(g) + $\frac{1}{2}$ O₁(g) + $\frac{1}{2}$ O₁(g) + $\frac{1}{2}$ O₁(g) + $\frac{1}{2}$ O (g) + $\frac{1}{2}$ Moles of CO₂ = $\frac{22}{44}$ $\frac{22}{44}$ = $\frac{1}{2}$ 1 Moles of H₂ = $\frac{3}{2}$ 3 Moles of N₂ = $\frac{7}{28}$ $\frac{7}{28} = \frac{1}{4}$ 1 Ratio of active masses = $1/2$: $3/2$: $1/4$ or $1:3:0.5$

23. (c)

$$
Kp = \frac{P'PCl \times P'Cl_2}{P'PCl_5} = \frac{\frac{b}{(a+b+c)}P \times \frac{c}{(a+b+c)} \times P}{\frac{a}{(a+b+c)}P}
$$

$$
K_p = \frac{bcP}{a(a+b+c)}
$$

24. (b)

$$
K_{P} = \frac{\alpha^{2}}{1 - \alpha^{2}} P \approx \alpha^{2} P.
$$

so,
$$
\alpha \approx \sqrt{\frac{K_{P}}{P}}
$$

25. (b)

$$
LaCl3(s) + H2O(g) + heat \longrightarrow LaClO(s) + 2HCl(g)
$$

$$
K_p = \frac{p_{HCl}^2}{p_{H_2O}} = \frac{p_{HCl}^2}{2p_{H_2O}} \qquad p_{HCl} = \sqrt{2}P_{HCl}
$$

26. (b)

 $H_2O(\ell)$ \Rightarrow H₂O(g)

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

www.neetjeenotes.com NEET/JEE MAIN PRACTICE PAPER 2024-2025

$$
K_{p} = (P_{H_{2}O})
$$

When neon is added at constant pressure, we have to increase volume of the container. So more water will evaporate to mantain equilibrium

27. (c)

Solubility of gas is directly proportional to the pressure of gas above liquid.

28. (d)

On increasing temperature though reaction equilibrium shifts in the backward direction but for rate of reaction to be higher, higher temperature is required and particle 500° C is found to be optimum temperautre.

29. (a)

 $K_p = (P_{H_iO})$

on is added at constant pressure, we have to increase volume

cultibrium

of gas is directly proportional to the pressure of gas above lie

perature though reaction equilibrium shifts in the backward of

cur $CO(g) + Cl_2(g) \xrightarrow{\longleftarrow} COCl_2(g)$ $\Delta n = 1 - 2 = -1; K_p = K_c (RT)^{\Delta n}$: $K_p = (RT)^{-1} = \frac{1}{RT}$ $\frac{K_{p}}{K_{q}} = (RT)^{-1} = \frac{1}{R^{2}}$ K_{p} (pr)-1 c \therefore $\frac{1}{p} = (RT)^{-1} =$

30. (a)

Use
$$
K_p = K_c (RT)^{\Delta ng}
$$