www.neetjeenotes.com

- **1.** Aluminium is not used
 - (a) In silvery paints
 - (b) For making utensils
 - (c) As a reducing agent
 - (d) As oxidizer in metallurgy
- 2. In the thermite process the reducing agent is
 - (a) Al (b) C

(c)	Mg		(d)	Na

- 3. In Goldschmidt aluminothermic process, thermite contains
 (a) 3 parts of Al₂O₃ and 4 parts of Al
 - (b) 3 parts of Fe_2O_3 and 2 parts of Al
 - (c) 3 parts of Fe_2O_3 and 1 part of Al
 - (d) 1 part of Fe_2O_3 and 1 part of Al
- 4. Bauxite containing impurities of iron oxide is purified by
 - (a) Hoop's process (b) Serpeck's process
 - (c) Baeyer's process (d) Electrolytic process
- 5. In the purification of bauxite by Hall's process
 - (a) Bauxite ore is heated with *NaOH* solution at $50^{\circ}C$
 - (b) Bauxite ore is fused with Na_2CO_3
 - (c) Bauxite ore is fused with coke and heated at 1800 ^{o}C in a current of nitrogen
 - (d) Bauxite ore is heated with $NaHCO_3$
- 6. Which one is used as a bye-product in Serpeck's process
 - (a) NH_3 (b) CO_2
 - (c) N_2 (d) PH_3
- In the metallurgy of aluminium, cryolite is mixed in the molten state because it

 (a) Increases the melting point of alumina
 - (b) Oxidises alumina
 - (c) Reduces alumina
 - (d) Decreases the melting point of alumina
- 8. In the electrolytic extraction of aluminium, cryolite is used
 - (a) To obtain more aluminium
 - (b) To decrease temperature to dissolve bauxite
 - (c) To protect the anode
 - (d) As reducing agent
- 9. In the extraction of aluminium, bauxite is dissolved in cryolite because
 - (a) It acts as a solvent
 - (b) It reduces melting point of aluminium oxide
 - (c) It increases the resistance of aluminium oxide
 - (d) Bauxite becomes active

- **10.** In the extraction of aluminium the electrolyte is
 - (a) Fused cryolite with felspar
 - (b) Fused cryolite with fluorspar
 - (c) Pure alumina in molten cryolite
 - (d) Pure alumina with bauxite and molten cryolite

11. Aluminium is obtained by

- (a) Reducing Al_2O_3 with coke
- (b) Electrolysing Al_2O_3 dissolved in Na_3AlF_6
- (c) Reducing Al_2O_3 with chromium
- (d) Heating alumina and cryolite

12. In the electrolysis of alumina, cryolite is added to

- (a) Increase the melting point of alumina
- (b) Increase the electrical conductivity
- (c) Minimise the anodic effect
- (d) Remove impurities from alumina
- **13.** The function of fluorspar in the electrolytic reduction of alumina dissolved in fused cryolite (Na_3AlF_6) is
 - (a) As a catalyst
 - (b) To lower the temperature of the melt and to make the fused mixture very conducting
 - (c) To decrease the rate of oxidation of carbon at the anode
 - (d) None of the above

14. For purification of alumina, the modern processes most useful when (i) the impurity present is a lot of iron oxides and (ii) the impurity present is a lot of silica, are

- (a) For (i) Hall's process; for (ii) Baeyer's process
- (b) For (i) Hall's process; for (ii) Serpeck's process
- (c) For (i) Serpeck's process; for (ii) Baeyer's process
- (d) For (i) Baeyer's process; for (ii) Serpeck's process
- **15.** For the electrolytic production of aluminium, (i) the cathode and (ii) the anode are made of
 - (a) (i) Platinum and (ii) Iron
 - (b) (i) Copper and (ii) Iron
 - (c) (i) Copper and (ii) Carbon
 - (d) (i) Carbon and (ii) Carbon
- **16.** In the commercial electrochemical process for aluminium extraction, the electrolyte used is
 - (a) $Al(OH)_3$ in NaOH solution
 - (b) An aqueous solution of $Al_2(SO_4)_3$
 - (c) A molten mixture of Al_2O_3 and Na_3AlF_6
 - (d) A molten mixture of AlO(OH) and $Al(OH)_3$
- 17. In electrolysis of aluminium oxide which of the following is added to accelerate the process
 - (a) Silica (b) Cryolite
 - (c) Nickel (d) Silicate

www.neetjeenotes.com

18. The purification of alumina is called

- (a) Bosch process (b) Caster process
- (c) Baeyer's process (d) Hoop's process
- 19. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out in the presence of
 - (a) NaCl
 - (b) Fluorite
 - (c) Cryolite which forms a melt with lower melting temperature

(d) Cryolite which forms a melt with higher melting

temperature

- 20. In the electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to the charge in order to (a) Minimize the heat loss due to radiation
 - (b) Protect aluminium produced from oxygen
 - (c) Dissolve bauxite and render it conductor of electricity
 - (d) Lower the melting point of bauxite
- **21.** Hoop's process is used for the purification of the metal
 - (a) *Al* (b) *Zn*
 - (c) *Ag* (d) *Cu*
- 22. Purification of aluminium done by electrolytic refining is known as
 - (a) Serpeck's process (b) Hall's process
 - (c) Baeyer's process (d) Hoop's process
- **23.** In the Hoope's process for refining of aluminium, the fused materials form three different layers and they remain separated during electrolysis also. This is because
 - (a) The upper layer is kept attracted by the cathode and the lower layer is kept attracted by the anode
 - (b) There is special arrangement in the cell to keep the layers separate
 - (c) The 3 layers have different densities
 - (d) The 3 layers are maintained at different temperatures
- **24.** During metallurgy of aluminium bauxite is dissolved in cryolite because
 - (a) Bauxite is non-electrolyte
 - (b) Cryolite is a flux
 - (c) Cryolite acts as an electrolyte
 - (d) All are correct

25. For the electrolytic refining of aluminium, the three fused layers consist of

Bottom Layer	Middle Layer	Upper Layer
Cathode of	Cryolite and	Anode of Al
pure Al	fluorspar	and <i>Cu</i> alloy
Cathode of Al	Bauxite and	Anode of
and <i>Cu</i> alloy	cryolite	pure Al
Anode of Al	Cryolite and	Cathode of
and <i>Cu</i> alloy	barium	pure Al
	fluoride	
	Bottom LayerCathodeofpure Al Cathode of Al and Cu alloyAnode of Al and Cu alloy	Bottom LayerMiddle LayerCathode ofCryoliteandpure AlfluorsparCathode of AlBauxiteandand Cu alloycryoliteandAnode of AlCryoliteandand Cu alloybariumtruefluoridefluoridefluoride

www.neetjeenotes.com

(d)	Anode	of	Bauxite,		Cathode	of
	impure Al		cryolite	and	pure Al	
			fluorspar			

26. Heating an aqueous solution of aluminium chloride to dryness will give

- (a) $AlCl_3$ (b) Al_2Cl_6
- (c) Al_2O_3 (d) $Al(OH)Cl_2$

27. The structure of diborane (B_2H_6) contains

- (a) Four 2c-2e bonds and two 3c-2e bonds
- (b) Two 2c-2e bonds and four 3c-2e bonds
- (c) Two 2c-2e bonds and two 3c-3e bonds
- (d) Four 2c-2e bonds and four 3c-2e bonds

28. Which of the following is the electron deficient molecule

(a) $B_2 H_6$	(b) $C_2 H_6$
(c) <i>PH</i> ₃	(d) SiH_4

29. In Hall's process, the main reagent is mixed with

(a)	NaF	(b)	Na_3AlF_6
(a)	Nar	(D)	NasAlF

(c) AlF_3 (d) None of these

30. Acedic strength of Boron trihalide are in order of

- (a) $BF_3 < BCl_3 < BBr_3 < BI_3$
- (b) $BI_3 < BBr_3 < BCl_3 < BF_3$
- (c) $BBr_3 < BCl_3 < BF_3 < BI_3$
- (d) $BF_3 < BI_3 < BCl_3 < BBr_3$

- **1.** (d) Aluminium is used as reducing agent in metallurgy.
- 2. (a) Al is used as reducing agent in thermite process.
- 3. (c) In Goldschmidt aluminothermic process, thermite contains 3 parts of Fe_2O_3 and 1 part of Al.
- (c) For the purification of red bauxite which contains iron oxide as impurity → Baeyer's process. For the purification of white bauxite which contains silica as the main impurity Serpeck's process.
- **5.** (b) In Hall's process

 $Al_2O_3.2H_2O + Na_2CO_3 \rightarrow 2NaAlO_2 + CO_2 + 2H_2O \quad 2NaAlO_2 + 3H_2O + CO_2 \xrightarrow{333 \ K} 2Al(OH)_3 \downarrow + Na_2CO_3 \\ 2Al(OH)_3 \xrightarrow{-1473 \ K} Al_2O_3 + 3H_2O$

- **6.** (a)
- 7. (d) Cryolite Na_3AlF_6
 - (1) Decreases the melting point of alumina
 - (2) Increases conductivity of the solution
- **8.** (b) Cryolite Na_3AlF_6 is added
 - (1) To decrease the melting temp from 2323 K to 1140 K
 - (2) To increase the electrical conductivity of solution
- **9.** (b)
- **10.** (c)
- **11.** (b)
- **12.** (b)
- **13.** (b)
- 14. (d) Iron oxide impurity Baeyer's process
 Silica impurity Serpeck's process
- **15.** (d)
- **16.** (c)
- 17. (b) Cryolite is added to lower the melting point of alumina and to increase the electrical conductivity.
- **18.** (c) The purification of alumina can be done by Baeyer's process.
- **19.** (c)
- **20.** (c) In electrolytic method of obtaining aluminium from purified bauxite, cryolite is added to charge because it reduces the melting point of Bauxite (from $1200 \ ^{o}C$ to $800 \ ^{o} 900 \ ^{o}C$) and also it increases electrical conductivity of mixture.
- **21.** (a) Hoop's process \Rightarrow Purification of *Al* Hall and Heroult process \Rightarrow Reduction of Al_2O_3

Baeyer's and Serpeck's process \Rightarrow Concentration of Bauxite ore

22. (d)

29. (b) Pure alumina is a bad conductor of electricity and the fusion temperature of pure alumina is about 2000°C and at this temperature when the electrolysis is carried of fused mass the metal formed vapoureses as the boiling point of Al is 1800°C. To overcome this difficulty, Na_3AlF_6 and CaF_2 are mixed with alumina.

30. (a) Concentration of Lewis acid of boron tri halides is increased in following order. $BF_3 < BCl_3 < BBr_3 < BI_3$.