www.neetjeenotes.com

1. To prepare But-2-yne from 2, 2, 3, 3-Tetrachlorobutane, reagent used is :

(a) Zinc dust / Δ	(b) Sodamide	
(c) Alc. KOH	(d) aq. KOH	

2. Which of the following compounds on hydrolysis gives propyne?

(a) CaC_2	(b) Mg_2C_3
(c) Al_4C_3	(d) Cu_2Cl_2

3. Which of the following will react most readily with bromine?

(a) $CH \equiv CH$ (b) $CH_2 = CH_2$ (c) $CH_3CH = CH_2$ (d) $CH_3CH_2CH_3$.

4. Most Acidic hydrogen is present in:

6.

(a) ethyne	(b) ethene
(c) benzene	(d) ethane

5. The product/s obtained when 1-pentyne is reacted with H_2O , H^+ , Hg^{+2} is/are

(a) $CH_3COCH_2CH_2CH_3$	(b) CH ₃ CH ₂ COCH ₂ CH ₃
(c) $CH_3CH_2CH_2COOH + HCOOH$	(d) $CH_3CH_2CH_2CH_2COOH$.
$CH_3 - C \equiv C - CH_3 \xrightarrow{(1) H_2/Pd/CaCO_3 \text{ or } BaSO_4} X$	

(a) (d)-2, 3-Dibromobutane	(b) (l)-2, 3-Dibromobutane
(c) (dl)-2, 3-Dibromobutane	(d) meso-2, 3-Dibromobutane

7. Acetylene reacts with excess of hypochlorous acid to produce

(a) Acetylene tetrachloride	(b) Acetylene chlorohydrin
(c) Acetaldehyde	(d) Dichloroacetaldehyde.

8. 1-Butyne can be converted into 1-bromo-1-butene by reacting it with which of the following reagent?

(a) HBr	(b) HBr and $(C_6H_5 COO)_2$	
(c) Br ₂ and H ₂ O	(d) Br_2 and CCI_4	

9. When 1-butyne is treated with excess of HBr, the expected product is

(a) 1, 2-Dibromobutane	(b) 2, 2-Dibromobutane
(c) 1, 1-Dibromobutane	(d) All the above

10. Acetylene on treatment with dil. H_2SO_4 having $HgSO_4$ gives :

(a) acetaldehyde(b) acetic acid(c) ethanol(d) ethylene

11. A five carbon atom alkyne forms a sodium salt on treatment with sodamide. The alkyne is

(a) $CH_3CH_2CH_2C \equiv CH$ (b) $CH_3C \equiv CCH_2CH_3$

www.neetjeenotes.com

(c) $(CH_3)_2 CHC \equiv CH$ (d) Either (a) or (c).

12. Which of the following reagents will distinguish between 1-butyne and 2-butyne?

(a) Br_2/CCI_4 (b) $AgNO_3 + NH_4OH$ (c) Dil. Cold $KMnO_4$ (d) $KMnO_4$

13. $CH = CH \xrightarrow{Ni(CN)_2} X$. Here X in the reaction

- (a) Benzene (b) Ethane
- (c) Cycloctatetraene (d) Cyclohexane

14. Acetylene gives

- (a) White precipitate with A_{gNO_3} and red precipitate with Cu_2Cl_2
- (b) White precipitate with Cu_2Cl_2 and red precipitate with $AgNO_3$
- (c) White precipitate with both the reagents
- (d) Red precipitate with both the reagents

15. Which of the C - C bond is strongest

- (a) Formed by $sp^3 sp^3$ hybridised carbon atoms (as in alkanes)
- (b) Formed by $sp^2 sp^2$ hybridised carbon atoms (as in alkenes)
- (c) Formed by sp sp hybridised carbon atoms (as in alkynes)
- (d) All are equal

16. A gas decolourises bromine in CCl_4 and forms a precipitate with ammoniacal silver nitrate. The gas is

(a)	C_2H_2	(b)	C_2H_4

(c) $C_2 H_6$ (d) $C H_4$

17. When acetylene reacts with HCl in the presence of H_gCl_2 , the product is

- (a) Methyl chloride (b) Dichloroethane
- (c) Vinyl chloride (d) Ethylidine chloride

18. When treated with ammoniacal cuprous chloride, which one among the following forms copper derivative

- (a) $C_2 H_6$ (b) $C_2 H_4$
- (c) $C_2 H_2$ (d) $C_6 H_6$
- 19. Which of the following is used to distinguish ethylene and acetylene (a) Alkaline $KMnO_4$
 - (b) Bromine water
 - (c) Ammoniacal cuprous chloride
 - (d) Conc. H_2SO_4
- 20. $CH_{\parallel\parallel}$ reacts with acetic acid in presence of Hg^{2+} to give $CH_{\parallel\parallel}$
 - (a) $\begin{array}{c} CH_3 \\ -\\ CH(CH_3COO)_2 \end{array}$ (b) $\begin{array}{c} CH(CH_3COO)_2 \\ -\\ CH(CH_3COO)_2 \end{array}$

(c)
$$\begin{array}{c} CH_3 \\ + \\ CH_2(CH_3COO) \end{array}$$
 (d) None of these

21. Which will undergo reaction with ammoniacal $AgNO_3$

(a)
$$CH_3 > CH - CH_2 - CH = CH - CH_3$$

(b) $CH_3 - CH = CH - C \equiv CH$
(c) $CH_3 - CH_2 - CH = CH - CH_2 - CH_3$
(d) $CH_2 = CH - CH_2 - CH_3$
(e) None

22.
$$\begin{array}{c} CH & \xrightarrow{O_3 / NaOH} X \xrightarrow{Z_n / CH_3 COOH} Y & Y' \text{ is} \\ CH & \\ (a) & \stackrel{CH_2 OH}{|} & \\ (b) & CH_3 CH_2 OH \\ (c) & CH_3 COOH & \\ (d) & CH_3 OH \end{array}$$

23. What is the product when 2-butyne is treated with liquid NH_3 in presence of lithium

(a) <i>n</i> -butane	(b) <i>cis</i> -2-butene	
(c) <i>trans</i> -2-butene	(d) 1-butene	

24. Number of acidic hydrogen atoms in butyne-1 are

(a) 2 (b) 3 (c) 1 (d) 4

25. Addition of *HCN* to ethyne in presence of $Ba(CN)_2$ as catalyst gives

- (a) 1, 1-dicyano ethane (b) Ethyl cyanide
- (c) Vinyl cyanide (d) Divinyl cyanide
- **26.** Which of the following is weakly acidic

(a)
$$CH_2 = CH_2$$
 (b) C_6H_6
(c) $CH_3 - C = CH$ (d) $CH_3 - C = C - CH$

27. Acetylene can be obtained by the reaction

(a) $HCOOK \xrightarrow{\text{electrolyiss}} \rightarrow$

(b)
$$CHI_3 + 6Ag + CHI_3 \xrightarrow{\Delta}$$

(c)
$$CH_3CH_2OH \xrightarrow{Conc. H_2SO_4}_{443 \circ C} \rightarrow$$

(d)
$$Be_2C + H_2O \rightarrow$$

28. What happens when a mixture of acetylene an hydrogen is passed over heated Lindlar's catalyst

3

(a) Ethane and water are formed

(b) Ethylene is formed

- (c) Acetylene and ethane are formed
- (d) None of these

NEET/JEE MAIN PRACTICE PAPER 2024-2025

www.neetjeenotes.com

- 29. $CH \equiv CH \xrightarrow{H_8SO_4} \xrightarrow{CH_3M_8Br} \xrightarrow{P/Br_2}$ (a) $CH_3CH(Br)CH_3$ (b) $CH_3CH_2CH_2Br$ (c) $CH_2 = CH - Br$ (d) $BrCH = CH - CH_3$
- 30. Carbide, which react with water to give propyne is
 - (a) CaC_2 (b) SiC
 - (c) Mg_2C_3 (d) Al_4C_3
 - (e) Be_2C

www.neetjeenotes.com

1. (ii)
$$CH_{1} = \frac{C}{C} - \frac{C}{C} = CH_{1} = \frac{2\pi dus}{C}$$
 $CH_{1} = C = C = CH_{1} (But -2-ymc)$
2. (b) $2Mg^{-1}(\tilde{C} = C - CH_{1} = \frac{\pi dus}{C} \rightarrow Mg (OH)_{1} + CH = C = CH_{1} (Propyne)$
3. (c)
4. (ii) Most Acidic hydrogen is present in ethyne.
5. (ii)
6. (c) $CH_{1} = C = C - CH_{1} = \frac{(H_{1} + RuC_{0}CH_{1})}{U = Mar^{-1}} \rightarrow H_{1}C = C = CH_{1} = \frac{B_{1}}{C} = CH_{1} = \frac{B_{2}}{M} \rightarrow CH_{2}CH_{1} = CH_{1} = \frac{B_{2}}{M} \rightarrow CH_{2}CH_{1} = CH_{1} = \frac{B_{2}}{M} \rightarrow CH_{2}CH_{1} = CH_{1} = \frac{B_{2}}{C} = O$
(d) $H = C = C - H + HO = CI \rightarrow CH = CH_{1} = \frac{HO_{2}}{CH} \rightarrow CH_{1}CH_{1} = CH_{1} = \frac{B_{1}}{CH_{1}} \rightarrow CH_{2}CH_{1} = CH_{2} = O$
(b) $CH_{1} = CH_{2} - C = C - H = \frac{HO_{2}}{H} \rightarrow CH_{2} - CH_{2} = CH_{2} = \frac{H}{C} \rightarrow CH_{1} = CH_{1} = CH_{2} = O$
(b) $CH_{1} = CH_{2} - C = C - H = \frac{HV_{2}}{H} \rightarrow CH_{2} = CH_{2} = CH_{2} = \frac{HV_{2}}{B} \rightarrow CH_{1} = CH_{2} = CH_{3}$
10. (ii) $H = C = C - H + H_{2}O = \frac{HV_{2}}{CH_{2}} \rightarrow CH_{2} = CH_{2} = CH_{2} = \frac{HV_{2}}{B} \rightarrow CH_{3} = CH_{3}$
11. (d)
12. (b) $CH_{3} = CH_{3} + A_{2}NO_{3} \rightarrow A_{3} = C^{-}C = CA_{3} = \frac{HV_{3}}{(M_{3} = M_{3})} \rightarrow CH_{3} = CH_{3} - CH_{3} = CH_$

NEET/JEE MAIN PRACTICE PAPER 2024-2025

16. (a)
$$CH = CH + 2Br_2 \xrightarrow{CCI_4} CH = CH + 2Br_2 \xrightarrow{CCI_4} CH - CH = CH + NH_4OH + AgNO_3 \rightarrow Ag - C \equiv C - Ag$$

 $CH \equiv CH + NH_4OH + AgNO_3 \rightarrow Ag - C \equiv C - Ag$
 $Di-silver acetylide white ppt.$

17. (c)
$$CH = CH + HCl \xrightarrow{H_gCl_2} CH_2 = CH - Cl$$

Vinylchloride

18. (c)
$$2NH_4OH + Cu_2Cl_2 \rightarrow 2CuOH + 2NH_4Cl$$

 $NH_4OH + CuOH \rightarrow [Cu(NH_3)_2]OH$
Diammine copper
(I)hydroxide
 $2[Cu(NH_3)_2]OH + HC \equiv CH \rightarrow Cu - C \equiv C - Cu + 4NH_3 + 2H_2O$
copper acetylide Red ppt.

19. (c)Acetylene reacts with ammonical cuprous chloride to give brown *ppt* where as ethylene does not give this reaction.

20. (a) Reaction of acetic acid with acetylene is catalysed by Hg^{2+} salts.

$$HC \equiv CH \xrightarrow{CH_3COOH} CH_2 = CHOOCCH_3$$

$$\frac{CH_3COOH}{Hg(OOCCH_3)_2} CH_2 = CHOOCCH_3$$

$$\frac{CH_3COOH}{Hg(OOCCH_3)_2} CH_3 - CH(OOCCH_3)_2$$

ethylidene diacetate

21. (b) $CH_3 - CH = CH - C \equiv C - H$. Acidic hydrogen (*H* atom attached to triple bond) is present therefore it gives reaction with ammoniacal A_gNO_3 .

22. (a)
$$(CH \equiv CH) \xrightarrow[NaOH]{O_3} CH - CH \xrightarrow{Hydrolysis}$$

$$\begin{array}{c} CHO - CHO \xrightarrow{Zn} & CH_2 - OH \\ \hline Glyoxal & CH_3COOH & CH_2 - OH \end{array}$$

- **23.** (c) Reduction of alkynes with liquid NH_3/Li gives trans alkenes.
- 24. (c)The hydrogen atom which is attached to triple bond is acidic.

25. (c)
$$CH \equiv CH + HCN \xrightarrow{Ba(CN)_2} CH_2 = CH - C \equiv N$$

Vinyl cy anide

- **26.** (d) $CH_3 C = C CH_3$ has not acidic character.
- 27. (b) Acetylene can be obtained by the reaction of silver and chloroform (or iodo form) $2CHI_3 + 6Ag \xrightarrow{\Delta} C_2H_2 + 6AgI_{acetylene}$

28. (b)
$$CH \equiv CH + H_2 \xrightarrow[Acetylene]{Lindlar} Catalyst \\ Acetylene \\ pd. BaSO_4 \\ Catalyst \\ Ethylene \\ Ethylene \\ CH_2 = CH_2$$

29. (a)
$$CH \equiv CH \xrightarrow{H_gSO_4} CH_3CHO \xrightarrow{CH_3M_gBr}$$

30. (c) $Mg_2C_3 + 4H_2O \rightarrow CH_3C \equiv CH + 2Mg(OH)_2$